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Abstract

Following Richter (1966), we provide criteria under which a preference relation im-

plied by a finite set of choice observations has a complete extension that can in turn

be represented by a utility function. These criteria rely on a mapping over preference

relations, the rational closure, which is a generalization of the transitive closure and

is employed to construct the complete extension. We illustrate this approach by re-

visiting the problem of rationalizing incomplete preferences revealed by a sequence of

consumption decisions under di↵erent budget sets. Our result relaxes the usual as-

sumptions about the consumption space and the structure of budgets generating the

observed choices, and allows for a new interpretation of classical revealed preference

axioms.

1 Introduction

Rational behavior is commonly modeled in economics in three di↵erent ways. A long tra-

dition, harking back to the founders of neoclassical economics if not even earlier,1 describes

rational behavior as the maximization of an objective (utility) function. Another approach,

pioneered by Frisch (1926) and developed and popularized by Debreu (1954), identifies ra-

tional behavior with the existence of a complete and transitive binary (preference) relation

over the objects of choice. A third strand, pioneered by Samuelson (1938), describes rational

behavior as the satisfaction of congruence (revealed preference) conditions on finite sets of

observed choices.
⇤Interdisciplinary Center for Economic Science, George Mason University. Email: mfreer@gmu.edu
†Interdisciplinary Center for Economic Science, George Mason University. Email: cmarti33@gmu.edu
1See e.g. Stigler (1950) for a historical summary.
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The connection between the di↵erent approaches to rational behavior has been the object

of attention of a theoretical literature in economics starting with the contributions of Debreu

(1954) on the problem of representing preference relation by means of utility functions and

Afriat (1967) on the problem of the construction of utility functions on the basis of finite data

sets. A seminal contribution by Richter (1966) considers the connection between the three

di↵erent approaches, providing a general equivalence result between congruence conditions

on finite sets of observed choices and the existence of preference relations, and an equivalence

result between congruence conditions on sets of observed choices from competitive (linear)

budgets and the representation of the underlying preferences by means of a utility function.

In this paper we seek to connect the three models of rational behavior in a parsimonious

way. That is, we seek for criteria under which a preference relation implied by a finite

set of choice observations has a complete extension that can in turn be represented by

a utility function. To this end, we build on the functional approach of Duggan (1999) and

Demuynck (2009), and introduce the notion of a rational closure as a mapping from (possibly

incomplete) preference relations to (possibly incomplete) preference relations whose fixed

points are transitive and that preserves separability properties of the original preference

relation. We show that the transitive closure considered previously by Duggan (1999) and

Demuynck (2009) and others is an example (not unique) of a rational closure.

Our main result is a representation theorem. We show that if an incomplete preference

relation has a complete, utility-representable extension that is a fixed point of the rational

closure if and only if a simple set-theoretic consistency requirement between the rational

closure and the incomplete preference relation is fulfilled. Intuitively, we think of the origi-

nal preference relation as the information on preferences that has been obtained from (not

necessarily finite) choice observations. The consistency requirement is then a general con-

gruence condition guaranteeing that the observed behavior can be represented by a utility

function. The fact that existence is obtained as a fixed point of a particular mapping has

implications for the utility function, as discussed below.

We then consider a revealed preference experiment. Intuitively, a revealed preference

experiment represents a situation in which information on strict preferences has been ob-

tained from finite, consecutive choice observations. With no restrictions on budget sets or

the consumption space, we show that a revealed preference experiment can be rationalized

by a utility function if and only if two conditions are satisfied: (1) the di↵erent observations

do not directly contradict each other, and (2) the consistency requirement identified in the

main theorem is satisfied by the union of the consecutive observations with respect to the

transitive closure. In our formulation, condition (1) is equivalent to a general version of

WARP, and conditions (1) and (2) are jointly equivalent to a general version of SARP. As a

corollary, without restrictions on budget sets or the consumption space, a general version of

SARP is necessary and su�cient for a revealed preference experiment to be rationalized by

a utility function.

Similarly, we show that a revealed preference experiment can be rationalized by a strictly
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increasing utility function if and only if conditions similar to (1) and (2) above are satisfied,

with the monotone closure (a mapping that incorporates both transitivity and monotonicity

criteria) substituting for the transitive closure. This illustrate the point that the techniques

in the paper can be put to us to provide tests for the existence of utility functions representing

choice observations that satisfy additional properties. An exception is continuity, which is

not compatible with the properties of a rational closure–mappings that satisfy continuity

do not induce transitivity and lead to inferences on preferences over pairs of alternatives

that cannot be obtained from information about a finite sample of preferences over pairs of

alternatives.

We also observe that a rationalization by a strictly increasing utility function while al-

lowing for observed choices to be indi↵erent to some other alternatives in the budget set,

as in Varian (1982), requires only a minor relaxation of condition (1). As a corollary a

general version of GARP is necessary and su�cient for a revealed preference experiment to

be rationalized allowing for indi↵erences of observed choices by a strictly increasing utility

function.

The connections between the di↵erent approaches to rational behavior have been an ob-

ject of attention of the literature for a long time. As mentioned above, the general connection

between utility functions and preference relations was originally studied2 by Debreu (1954)

in the context of continuous utility functions. Rader (1963) and Ja↵ray (1975) relaxed the

assumption of continuity and obtained semi-continuous utility rationalization results that

were generalized by Bosi and Mehta (2002). Peleg (1970) shown the su�cient condition

for existence of a continuous utility representation for incomplete preference relation. More

recently Ok (2002), Evren and Ok (2011) have investigated a problem of existence of a

vector-valued utility representation of preference relations.

The basic result connecting the set of choices and preference relations was proven by

Szpilrajn (1930). Szpilrajn shown that any acyclic preference relation has a complete and

transitive extension. Demuynck (2009) generalized the result by providing a condition to

test for existence of complete extension that has properties usually assumed by economists.

The connection between finite data sets and the utility functions was originally investi-

gated by Afriat (1967). Afriat (1967) uses linear budgets in a Euclidean consumption space

and obtains the existence of a concave, monotone and continuous3 utility function that is

congruous with the observations. Subsequent literature has constructed tests for consistency

of the finite consumption data with various utility maximization hypothesis. Kannai (1977),

Matzkin (1991), Matzkin and Richter (1991) and Forges and Minelli (2009) address the ques-

tion of testing concavity of the utility representation. Varian (1983), Diewert and Parkan

(1985), Echenique and Saito (2015) and Polisson et al. (2015) develop tests for separable

utility representations including the context of choices under uncertainty. Crawford (2010)

2Earlier representation theorems under additional assumptions were provided by Cantor (1895) for com-
pletely ordered sets and Von Neumann and Morgenstern (1947) for lotteries.

3That is, with respect to the usual Euclidean topology.
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propose a test for habit formation models. Reny (2015) extends Afriat (1967) results using

linear budgets to infinite data sets–as in our case, the extra generality implies giving up on

deriving continuity from the data. Chambers et al. (2010) characterize the testable impli-

cations of revealed preference theory. Echenique and Chambers (2016) provide a general,

systematic overview of revealed preference results.

The remainder of this paper is organized as follows. In Section 2 we introduce basic

definitions on preference extensions and closure mappings. In Section 3 we state and prove

our main utility representation theorem. In Section 4 we revisit revealed preference theory

from the viewpoint of extensions and closures. In Section 5 we revisit generalized revealed

preference from the same viewpoint. In Section 6 we o↵er concluding remarks.

2 Preliminaries

2.1 Alternatives

We consider an arbitrary set of alternatives X, with elements denoted x, y, etc. Some ex-

amples of interest are (a) a finite set, representing job o↵ers available to a worker, houses

available to a buyer, etc., (b) the positive orthant of a finite Euclidean space Rm
+ , represent-

ing bundles of m commodities, (c) the set of sequences (c0, c1, . . . , ct, . . .) where ct 2 Rm
+ ,

representing consumption plans potentially available to a long lived agent, and (d) the set

of probability measures over R, representing lotteries with monetary rewards or losses.

We introduce additional structure on the set of alternatives as needed. In particular, in

order to define continuous preferences, we let (X, ⌧) be a topological space for some topology

⌧ .4 The classical continuous representation results of Debreu (1954) and Rader (1963) relay

on the topological space (X, ⌧) being second countable, that is, having a countable base.5

Continuity is of course an attractive property when there are infinite alternatives as in

examples (b), (c) and (d). The Euclidean space of example (b), equipped with the usual

Euclidean topology, is a second countable space. There are di↵erent topological spaces of

interest for examples (c) and (d), and not all of them are second countable; see e.g. Mas-

Colell (1986) and Stokey and Lucas (1989). This illustrates the usefulness of representation

results for arbitrary sets of alternatives.

2.2 Preference Relations

A set R ✓ X ⇥ X is said to be a preference relation. We denote the set of all preference

relations on X by R. We denote the inverse relation R

�1 = {(x, y)|(y, x) 2 R}. We denote

4Recall that a topology on X is a collection of subsets of X, called open sets, that includes ; and X, and
that is closed under arbitrary unions and finite intersections.

5Recall that a base for a topology ⌧ on X is a collection B of open sets, such that every x 2 X and every
open set U containing x, there is V 2 B such that x 2 V ✓ U .
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the symmetric (indi↵erent) part of R by I(R) = R \ R

�1 and the asymmetric (strict) part

by P (R) = R \ I(R). We denote the incomparable part by N(R) = X ⇥X \ (R [R

�1).

Definition 1. Given a preference relation and any alternative in X, the lower contour

set and the upper contour set of x are, respectively,

LR(x) = {y|(x, y) 2 P (R)} and UR(x) = {y|(y, x) 2 P (R)}.

We list below some properties of a preference relation:

Definition 2. A preference relation R is said to be

– complete if (x, y) 2 R [R

�1
for all x, y 2 X (or equivalently N(R) = ;).

– transitive if (x, y) 2 R and (y, z) 2 R implies (x, z) 2 R for all x, y, z 2 X.

– Z-separable for given Z ✓ X if for any (x, y) 2 P (R) there is z 2 Z such that

(x, z) 2 R and (z, y) 2 R.

– upper semi-continuous if (X, ⌧) is a topological space and LR(x) for all x 2 X are

open.

– continuous if (X, ⌧) is a topological space and LR(x) and UR(x) for all x 2 X are

open.

Completeness and transitivity are the usual desirable properties of preference relations.

Separability and continuity play a key role in classical representation results to which we

appeal later on.

Examples. Suppose that X = Rm
+ , with the usual Euclidean topology. (a) It is well

known that if R is complete, transitive and continuous, then R is Qm
+ -separable, that is

for any (x, y) 2 P (R) there is a bundle z all whose components are rational numbers such

that (x, z) 2 R and (z, y) 2 R (see e.g. Kreps (2012), Proposition 1.15). Since Qm
+ is

countable, it follows that R is separable with respect to any collection of subsets of R that

includes Qm
+ . (b) Denote by L the lexicographic preference relation, i.e. (x, y) 2 L if there

is k 2 {1, . . . ,m} such that xi = yi for i < k and xk > yk. It is well-known that this

relation is not Qm
+ -separable (see e.g. Mas-Colell et al. (1995), Example 3.C.1). However, L

is Rm
+ -separable.

A driving idea in this paper is to extend incomplete preference relations including ad-

ditional comparisons of pairs of alternatives while preserving the asymmetric part of the

original preference relation:

Definition 3. A preference relation R

0
is an extension of R, denoted R � R

0
, if R ✓ R

0

and P (R) ✓ P (R0).
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2.3 Functions over Preference Relations

In this section we consider general functions F : R ! R defined over the set of preference

relations which may be used to extend an incomplete preference relation.

Definition 4. For any given function F : R ! R, we let

– RF = {R 2 R|R � F (R)},

– RZ
F = {R 2 R and R is Z-separable |R � F (R)},

RF and RZ
F are di↵erent sets of preference relations that are extended by F .

We list below some properties of a function over the set of preference relations:

Definition 5. A function F : R ! R is said to be

– monotone if for all R,R

0 2 R, if R ✓ R

0
, then F (R) ✓ F (R0),

– closed if for all R 2 R, R ✓ F (R),

– idempotent if for all R 2 R, F (F (R)) = F (R),

– algebraic if for all R 2 R and all (x, y) 2 F (R), there is a finite relation R

0 ✓ R such

that (x, y) 2 F (R0),

– expansive if for any R = F (R) and N(R) 6= ;, there is a nonempty set S ✓ N(R)

such that R [ S 2 RF and P (R) = P (R [ S),

– transitive-inducing if any preference relation satisfying R = F (R) is transitive,

– separability-preserving if there is a countable set QF such that for any countable

set Z and R 2 RZ
F , F (R) is (QF [ Z)-separable.

– upper semi-continuous if (X, ⌧) is a topological space and R 2 R̂F implies F (R) is

upper semi-continuous,

– continuous if (X, ⌧) is a topological space and R 2 R̃F implies F (R) is continuous.

Any function F : R ! R that is monotone, closed and idempotent is called a closure.

A closure is algebraic as defined above if any element of the closure can be obtained from

applying the closure to a finite subset of the original relation.6

Expansiveness and transitivity impose conditions on fixed points of F . Expansiveness of

F , in particular, means that we can add some indi↵erence pairs to any fixed point R = F (R)

that is not complete, such that the new relation will be in RF .

6See e.g. Davey and Priestley (2002), definition 7.12.
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Separability preserving implies that if R is separable with respect to any countable set Z

and is extended by F , then we can augment Z so that F preserves separability with respect

to the augmented set. Note that R 2 RZ
F implies R 2 RQF[Z

F .

Gathering the first seven properties, we can define the following:

Definition 6. A function F : R ! R is said to be a rational closure if it is an expansive

algebraic closure that induces transitivity and separability-preserving.

Intuitively, a rational closure is a rule which may be useful to extend some original

incomplete preference relation, and that satisfies certain desirable criteria. Those criteria

include not losing information contained in the original preference relation (closeness and

monotonicity), being thorough in using that information (idempotence), using finite sets of

information contained in the original preference relation to make each binary comparison

(algebraicity), being able to incorporate some indi↵erences (expansiveness), and inducing

transitivity and preserving separability of the original preference relation, both of which are

useful to build a utility representation.

The transitive closure provides a natural example of a function over preference rela-

tions. Denote it by

T : R ! R,

where (x, y) 2 T (R) if and only if there is a finite sequence s1, . . . , sn such that (sj, sj+1) 2 R

for every j = 1, . . . , n� 1, and s1 = x and sn = y.

We claim:

Lemma 1. The transitive closure T : R ! R is a rational closure.

Proof. It is easy to check that T is an algebraic closure and that it induces transitivity.

To prove that T is separability-preserving, recall that by definition for any (x, y) 2 T (R)

if and only if there is a finite sequence s1, s2, . . . , sn such that (sj, sj+1) 2 R for every

j = 1, . . . , n � 1, and s1 = x and sn = y. This implies that for any (x, y) 2 P (T (R))

there is some k 2 {1, . . . , n � 1} such that (sk, sk+1) 2 P (R). Now suppose the R is Z-

separable; this implies that there is some z 2 Z such that (sk, z), (z, sk+1) 2 R. But then

(x, z), (z, y) 2 T (R). Thus, T (R) is also Z-separable. (That is, in terms of the definition or

separability-preservation, QT = ;.)
To prove that T is expansive, consider a relation R = T (R) and assume that N(R) 6= ;.

Take any element (x, y) 2 N(R) and consider the relation R

0 = R [ {(x, y), (y, x)}. We

claim that R0 � T (R0), which would prove that T is expansive. It is clear that R0 ✓ T (R0).

Therefore, we only need to show that P (R0) ✓ P (T (R0)). Assume, on the contrary, that

there are elements z and w for which (z, w) 2 P (R0) and (w, z) 2 T (R0), and note that

(x, y) 6= (z, w) 6= (y, x). From the definition of T , we know that there is some finite sequence

s1, . . . , sn such that s1 = w, sn = z, and (sj, sj + 1) 2 R

0 for each j = 1, . . . , n � 1. Let m

be the minimal integer such that there is such sequence of length m, and let S be any such

sequence of length m.
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Given a sequence S as described above, there is some j such that either (sj, sj+1) = (x, y)

or (sj, sj+1) = (y, x) for some 1 < j < m � 1; otherwise (w, z) 2 T (R) = R, contradicting

(z, w) 2 P (R0). Suppose without loss of generality that (sj, sj+1) = (x, y) for some 1 <

j < m � 1; then there is no k 6= j such that (sk, sk+1) = (y, x) or (sk, sk+1) = (x, y),

otherwise S would not be the shortest sequence from w to z such that every consecutive

pair is in R

0. Since (z, w) 2 P (R0), we have (z, w) 2 R

0. Now consider the finite sequence

y, sj+2, . . . , sm�1, z, w, s1, . . . , sj�1, x. Note that every pair of consecutive elements of the

sequence is in R

0 and is di↵erent from (x, y) and (y, x), so every pair of consecutive elements

of the sequence is in R. But then (y, x) 2 T (R) = R, contradicting (x, y) 2 N(R).

Note that separability-preserving holds for the transitive closure in a very simple form.

That is, if R is Z-separable for any Z and extended by T , then T (R) is also Z-separable. We

are giving more latitude in the definition of a separability-preserving function to accommo-

date other useful rational closures. In particular, the monotone closure, described in Section

4, requires to expand Z judiciously in order for the monotone closure to preserve separability

with respect to the augmented set.

It is simple to check that the transitive closure is not upper semi-continuous and therefore

not continuous for arbitrary topological space (X, ⌧). As an illustration of a closure that is

continuous–and therefore, a fortiori upper semi-continuous–for arbitrary topological space

(X, ⌧), consider the continuity closure given by

C : R ! R,

where (x, y) 2 C(R) if and only if there is a sequence (xn, yn) 2 R, such that xn ! x and

yn ! y. Unfortunately, the continuity closure is neither algebraic nor transitive, as shown

by means of examples below.

Examples. (a) Consider the preference relation R

0 over X = R, equipped with the

Euclidean topology, such that (x, y) 2 I(R0) if and only if either x, y > 1, or x, y < 1, or

x, y = 0, 1, and (x, y) 2 P (R0) if and only x > 1 > y. We can check that (x, y) 2 I(T (R0)) if

and only if either x, y > 1 or x, y  1 and (x, y) 2 P (T (R0)) if and only x > 1 � y. Note that

LR0(x) is not open for x > 1. That is, T (R0) is transitive and extends R0, but it is not upper

semi-continuous. We can also check that (x, y) 2 I(C(R0)) if and only if x, y � 1 or x, y  1,

and (x, y) 2 P (C(R0)) if and only if x > 1 > y. That is, C(R0) is continuous and extends

R

0, but it is not transitive. (b) Consider the preference relation R

00 = {( 1n , 1) : n 2 N} over

X = R, equipped with the Euclidean topology. Note that (0, 1) 2 C(R00), but there is no

finite sub-relation R ⇢ R

00 such that (0, 1) 2 C(R), showing that the continuous closure is

not algebraic.

A condition to apply the classical representation results of Debreu (1954) and Rader

(1963) is that (X, ⌧) is a second countable topological space for some topology such that

contour sets are open. If (X, ⌧) is second countable, in fact, upper semi-continuity of F

implies that F is separability-preserving with respect to the base of the topology. That
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is, for a given second countable topological space, separability preserving with respect to

the base of the topology, upper semi-continuity, and continuity are increasingly demanding

conditions on F . However, as illustrated by the discussion above, upper semi-continuity is

in fact too demanding to be of interest for our approach as it conflicts with other desirable

properties.

2.4 Consistency

As shown below, the following is a necessary and su�cient condition for F (R) to be an

extension of R:

Definition 7. Given a function F : R ! R, a preference relation R is said to be F-

consistent if F (R) \ P

�1(R) = ;.

Example. Let the set of alternatives be X = {x1, x2, x3, x4, x5} and consider the

preference relation R = {(x1, x2), (x2, x3), (x3, x1)}. This relation is not transitive and is

not T -consistent because (x1, x3) 2 T (R) and (x3, x1) 2 P (R). On other hand R

0 =

{(x1, x2), (x2, x3), (x4, x5)} is not transitive but it is T -consistent. Note that transitivity

of R is su�cient but not necessary for T -consistency of R.

3 A Representation Theorem

Our main result is a theorem providing conditions for the existence of a utility function that

represents the complete extension of a given preference relation. We do it by showing the

existence of a complete relation that is a fixed point of a rational closure. Following Debreu

(1954), we define as a natural topology for a given complete and transitive preference

relation R any topology such that R is continuous.

Theorem 1. Let F be a rational closure and let R 2 R be Z-separable for some countable

set Z. R has a complete extension R

⇤ = F (R⇤) that can be represented by a utility function

if and only if R is F-consistent. Moreover, the utility function is continuous in any natural

topology.

To prove Theorem 1 we need several supplementary results. We use the following result

(contained in Lemma 1 in Demuynck (2009)) repeatedly in the proofs:

Lemma 2. If F : R ! R is closed, then R 2 RF if and only if R is F -consistent.

Proof. Since R ✓ F (R) by assumption, we only need to show that P (R) ✓ P (F (R)) if and

only if R is F -consistent. If (x, y) 2 P (R) then (x, y) 2 R and therefore (x, y) 2 F (R). Thus,

(x, y) 2 P (F (R)) for every (x, y) 2 P (R) if and only if (y, x) /2 F (R) for every (x, y) 2 P (R),

or equivalently if and only if F (R) \ P

�1(R) = ;.
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The next two results are useful in order to apply Zorn’s lemma and show that there is a

complete extension of the original preference relation.

Lemma 3. If F : R ! R is closed, monotone and algebraic, then for any countable Z and

every chain

R0 � R1 � · · · � R↵ � · · ·

such that R↵ 2 RZ
F for all ↵, we have [↵�0R↵ 2 RZ

F .

Proof. Let B = [↵�0R↵. If the chain is finite B is itself an element (the last element) of

the chain, so that B 2 RF is immediate. Thus, we only need to be concerned with infinite

chains. We know that each element R↵ of the chain is F -consistent (from Lemma 2) and

Z-separable, and we only need to show that B is F -consistent and Z-separable.

For consistency of B, assume that there is (x, y) 2 F (B) but (y, x) 2 P (B). By construc-

tion of B we know that (y, x) 2 Ra for some relation Ra (with finite index a), and therefore

(y, x) 2 R↵ for ↵ � a. Since F is algebraic, there is some finite relation R

0 ✓ B such that

(x, y) 2 F (R0). Moreover, since R0 is finite, there is some Rb (with finite index b) in the chain

such that R0 ✓ Rb. Since F is monotone, F (R0) ✓ F (Rb) and therefore (x, y) 2 F (Rb). By

monotonicity again, (x, y) 2 F (R↵) for ↵ � b. Hence, there is a finite c = max{a, b} such

that Rc is not F -consistent, a contradiction.

For Z-separability of B, suppose that (x, y) 2 P (B). By construction of B we know

that (x, y) 2 Rd for some relation Rd (with finite index d), and (y, x) /2 R↵ for any ↵.

Hence (x, y) 2 P (Rd). From Z-separability of Rd, there is z 2 Z such that (x, z) 2 Rd and

(z, y) 2 Rd. But then (x, z) 2 B and (z, y) 2 B.

Lemma 4. If F : R ! R is closed, idempotent, separability preserving, and expansive, then

for any countable Z ◆ QF and for every R 2 RZ
F such that N(R) 6= ; there is a non-empty

subset S of N(R) such that R [ S 2 RZ
F .

Proof. Consider first the case R 6= F (R), and let S = F (R) \R. Note that S 6= ; since F is

closed, and by construction R [ S = F (R). Since F is separability preserving, then R 2 RZ
F

implies R[ S is Z-separable. Since F is idempotent, F (F (R)) = F (R) so F (F (R)) ⌫ F (R)

and F (R) = R [ S 2 RZ
F .

Consider now the caseR = F (R). Since F is expansive, there is a nonempty set S ✓ N(R)

such that R[S is F -consistent and P (R[S) = P (R). Since R is Z-separable, it follows that

R[S is also Z-separable. Since R[S is F -consistent and Z-separable, we get R[S 2 RZ
F .

In order to prove Theorem 1 we need also a classical result from Debreu (1954) included

below for reference.

Lemma 5 (Lemma 2 from Debreu (1954)). If R is a complete, transitive and Z-separable

preference relation for some countable Z ✓ X, then there is a utility function that represents

R and is continuous in any natural topology.
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We turn to the main proof next.

Proof of Theorem 1. Assume throughout the proof that F is a rational closure and R a Z-

separable preference relation for some countable Z. Define Z

0 = Z [ QF and note that R

is Z [ QF -separable. To prove necessity of the condition in the statement of the theorem,

suppose first that R is not F -consistent, and let R0 be any extension of R. From R

0 ◆ R and

monotonicity of F we get F (R0) ◆ F (R). From P (R0) ◆ P (R) we get P�1(R0) ◆ P

�1(R).

It follows that if R is not F -consistent, then R

0 is not F -consistent. Note that if R0 is not

F -consistent, then P (R0) 6= P (F (R0)) and hence R0 6= F (R0). Thus, if R is not F -consistent,

it cannot have an extension that is a fixed point of F .

To prove su�ciency, suppose R is F -consistent. Since F is separability-preserving and R

is Z 0-separable, then F (R) is Z 0-separable as well. Let

⌦ = {R0 2 RZ0

F |R � R

0}

be the set of extensions of R that are themselves Z 0-separable and extended by F . Note that

by Lemma 2, R 2 ⌦ if R is F -consistent, so ⌦ is nonempty.

We claim that every chain R0 � R1 � · · · � R↵ � · · · of relations in ⌦ has an upper

bound B = [↵�0R↵ 2 ⌦. To see this, from Lemma 3, B 2 RZ0
F . It remains to check that

R � B. Clearly, R ✓ B. If P (B) + P (R), then there are elements x, y 2 X such that

(x, y) 2 P (R) and (y, x) 2 B. But then there must be a relation R↵ in the chain for which

(y, x) 2 R↵, which contradicts the fact that R � R↵ and we conclude that B 2 ⌦. Clearly, �
is a partial order (reflexive, antisymmetric and transitive binary relation) on ⌦ and we just

showed that every chain has an upper bound. Hence, by Zorn’s lemma, there is maximal

element of ⌦, and we can denote it by R

⇤.

We claim that R

⇤ is complete. To see this, assume on the contrary that N(R⇤) 6= ;.
From Lemma 4 and the fact that QF ✓ Z

0, we know that there is a nonempty S ✓ N(R⇤)

such that R⇤ [ S 2 RZ0
F . Since R

⇤ ⌫ R, we have R

⇤ [ S � R

⇤ � R. Note that (y, x) 2 P (R)

implies (x, y) /2 R

⇤ (since R

⇤ ⌫ R) and (x, y) /2 S (since S ✓ N(R⇤) ✓ N(R)). Hence,

P (R⇤ [ S) ◆ P (R). But then R

⇤ [ S ⌫ R and R

⇤ [ S 2 RZ0
F , which contradicts that R⇤ is a

maximal element of ⌦.

We claim further that R

⇤ is a fixed point of F (R), i.e. F (R⇤) = R

⇤. To see this, note

that R⇤ ✓ F (R⇤) follows from the fact that R

⇤ � F (R⇤). To get the reverse, assume that

(x, y) 2 F (R⇤) and (x, y) /2 R

⇤. From completeness of R⇤, (y, x) must be an element of

P (R⇤) which contradicts R⇤ � F (R⇤). Therefore, F (R⇤) ✓ R

⇤.

We are left to show that there is a utility function that represents R⇤ = F (R⇤). We just

showed that R

⇤ is complete. Since F is a rational closure, R⇤ is transitive as well. As we

already showed R

⇤ 2 ⌦ ✓ RZ0
F , it follows that R

⇤ is Z

0-separable. Hence, R⇤ satisfies the

conditions from Lemma 5, i.e. there is utility function that represents R

⇤. Moreover, the

utility function is continuous in natural topology.
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Intuitively, we can think of the rational closure F as helping to construct a complete

extension of the original preference relation via an iterated algorithm. Starting with the

original preference relation, the algorithm works as follows. If the preference relation at a

given iteration is already a fixed point of F , but it is not a complete relation, the algorithm

requires adding indi↵erence pairs to R while keeping the new preference relation in RF .

Adding indi↵erence points in this manner is possible since F is expansive. If instead the

preference relation at a given iteration is not a fixed point, the algorithm requires going from

R to F (R), which expands R while preserving its asymmetric part—since F is idempotent,

the new preference relation is a fixed point of F . In this sense, the proof of Theorem 1

establishes that such algorithm converges to a complete fixed point as long as the original

preference relation is F -consistent. Since the algorithm preserves separability properties of

the preference relation, and fixed points of F are transitive, the complete fixed point is

representable by a utility function. Of course, convergence need not occur after a finite

number of iterations, and the proof relies on Zorn’s Lemma to assert existence.

4 Revealed Preference Revisited

In this section we illustrate the techniques proposed in the paper by revisiting the classical

problem of the existence of a utility function rationalizing observations obtained from a

finite number of budget sets. Formally, a consumption experiment is a finite vector

E = (xi, Bi)ni=1 2 (X ⇥ 2X)n where for each i = 1, . . . , n, xi 2 Bi ✓ X. The interpretation is

that xi are chosen alternatives and Bi are budget sets, so that each xi is (directly) revealed

to be strictly preferred to each alternative in Bi \ {xi}.
Given a consumption experiment E = (xi, Bi)ni=1, for each i = 1, . . . , I, let Ri = {(xi, y) :

y 2 Bi \ {xi}}, and let RE =
S

i Ri. We say that an experiment E = (xi, Bi)ni=1 can be

rationalized if there is a preference relation that is a complete extension of every element

in the set {Ri} and that can be represented by a utility function. We claim:

Proposition 1. A consumption experiment can be rationalized if and only if (1) RE ⌫ Ri

for i 2 {1, . . . , n} and (2) RE is T -consistent.

Proof. To prove su�ciency of conditions 1 and 2, note that RE is separable with respect to

the finite set {x1, . . . , xn} and recall that the transitive closure is a rational closure (Lemma

1). From Theorem 1, then, RE has a complete extension R

⇤ that can be represented by a

utility function if and only if RE is T -consistent; that is, condition 2. Since R⇤ ⌫ RE and ⌫
is a transitive relation, condition 1 is su�cient for R⇤ ⌫ Ri for i 2 {1, . . . , n}.

To prove necessity of condition 1, note that by construction P (Ri) = Ri for i 2 {1, . . . , n}.
Hence, if there is some i such that P (RE) + P (Ri), it must be the case that there is some

j 6= i such that (xi, xj) 2 Ri = P (Ri) and (xj, xi) 2 Rj = P (Rj). But there cannot be any

preference relation R

⇤ satisfying (xi, xj) 2 P (R⇤) and (xj, xi) 2 P (R⇤).

12



To prove necessity of condition 2, suppose RE is not T -consistent but condition 1 holds.

Then for any preference relation R

⇤ that extends every Ri, we can build a cycle of strict

preference between three or more alternatives, which implies that R⇤ cannot be represented

by a utility function.

Two criteria to ascertain the rationality of the consumption experiment (developed first

by Samuelson (1938) and Houthakker (1950)) are described below:

Definition 8. The consumption experiment E = (xi, Bi)ni=1 satisfies the Weak Axiom of

Revealed Preference (WARP) if for every {i, j} ✓ {1, . . . , n}, xj 2 B

i
implies xi = xj or

xi /2 Bj.

Definition 9. The consumption experiment E = (xi, Bi)ni=1 satisfies the Strong Axiom of

Revealed Preference (SARP) if for every integer m  n and every {i1, . . . , im} ✓ {1, . . . , n},
xij+1 2 Bij for j = 1, . . . ,m� 1 implies xi1 = xim or xi1 /2 Bim.

The interpretation of WARP is that two alternatives cannot be directly revealed to

be strictly preferred to each other, while the interpretation of SARP that in addition two

alternatives cannot be indirectly revealed to be strictly preferred to each other, via a chain

of direct revelation.

The following are immediate:

Lemma 6. E = (xi, Bi)ni=1 satisfies WARP if and only if RE ⌫ Ri for i 2 {1, . . . , n}.

Lemma 7. E = (xi, Bi)ni=1 satisfies SARP if and only if (1) RE ⌫ Ri for i 2 {1, . . . , n} and

(2) RE is T -consistent.

As a corollary of Proposition 1 and Lemma 7, a finite consumption experiment can be

rationalized if and only if it satisfies SARP.

By working with other closures we can induce monotonicity as well as transitivity in the

complete extension of the original preference relation. For this purpose we need to introduce

more structure on X. Assume X is endowed with a transitive and reflexive relation �, with

strict part denoted by >, and suppose there is a countable set Q that is dense in X with

respect to �; that is, for all x, y 2 X such that x > y there is Z 2 Q such that x > z > y. As

an example, we have X = Rm and Q = Qm for positive integer m. We say that a preference

relation R is monotone if for all x, y 2 X, x > y implies (x, y) 2 P (R).

We define the monotone closure by M : R ! R, where (x, y) 2 M(R) if there is a

finite sequence s1, . . . , sn such that s1 = x and sn = y, and for any j = 1, . . . , n � 1 either

(1) (sj, sj+1) 2 R, or (2) sj > sj+1.

We have

Lemma 8. The monotone closure M : R ! R is a rational closure.
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Proof. It is easy to check that M is an algebraic closure and that induces transitivity. Ex-

pansiveness of M can be proven in a similar way to the expansiveness of T , considering the

fact that R = M(R) is already monotone relation, i.e. all pairs x � y are already in M(R).

We are left to show that M is separability-preserving. Consider a preference relation R

satisfying R 2 RZ
M for some countable set Z ✓ X. We claim that M(R) is Z [Q-separable,

so that QM = Q. To see this, note that (x, y) 2 P (M(R)) implies that there is a sequence

S = s1, . . . , sn, such that s1 = x, sn = y and for any j = 1, . . . , n � 1 either (sj, sj+1) 2 R,

or sj > sj+1, with at least one k 2 {1, . . . , n� 1} such that either (1) (sk, sk+1) 2 P (R), or

(2) sk > sk+1. If (sk, sk+1) 2 P (R), then there is z 2 Z, such that {(x, z), (z, y)} ✓ M(R).

If sk > sk+1 there is z 2 Q (since Q is dense with respect to �) such that sk � z � sk+1, i.e.

{(x, z), (z, y)} ✓ M(R).

We make the (relatively mild) assumption that budgets are comprehensive; that is for

each i 2 {1, . . . , n}, x 2 Bi and y < x imply y 2 Bi.

We have:

Proposition 2. A consumption experiment with comprehensive budgets can be rationalized

by a strictly increasing utility function if and only if (1) RE ⌫ Ri for i 2 {1, . . . , n} and (2)

RE is M-consistent.

Proof. We prove su�ciency of conditions (1) and (2); necessity of each of the two conditions

follows along the lines of the previous proposition.

From condition (2) and Lemma 2, we have that M(RE) extends RE. From condition 1,

then, M(RE) extends Ri for i 2 {1, . . . , n}. Since (xi, y) 2 P (Ri) for all y 2 Bi \ {xi}, we
must have (xi, y) 2 P (M(RE)) for all y 2 Bi \ {xi}. But from the definition of M , y > xi

implies (y, xi) 2 M(RE). It follows that (x, y) 2 Ri implies that it is not the case that y > x,

and hence (x, y) 2 RE implies that it is not the case that x < y.

We claim that M(RE) is monotone; that is (x, y) 2 P (M(RE)) for all x > y. To see this,

from the definition of M , x > y implies (x, y) 2 M(RE). So we only need to show x < y

implies (x, y) /2 M(RE), or equivalently, (x, y) 2 M(RE) implies that it is not the case that

x < y. That is, it remains to be shown that if there there is a sequence s1, . . . , sn such that

s1 = x and sn = y, and for any j = 1, . . . , n� 1 either (i) (sj, sj+1) 2 RE, or (ii) sj > sj+1,

then it cannot be the case that x < y.

Consider any such sequence as described in the previous paragraph. Trivially, if every

consecutive pair in the sequence is of type (ii) we get x > y, so assume there is some

consecutive pair of type (i) in the sequence, and let (sk, sk+1) be the last step of type (i).

From the definition of E, this implies that sk is equal to xi for some i 2 {1, . . . , n}. If

k + 1 = n, we get immediately (sk, y) 2 Ri. If k + 1 < n, using the fact that (sk, sk+1)

is the last step of type (i) we get y < sk+1, hence from comprehensiveness of budget sets

y 2 Bi. Since y < sk+1 2 Bi, we know y 6= xi and then (sk, y) 2 Ri. In either case, then,

from condition (1), (sk, y) 2 P (RE). But if y > x, we can show (y, sj) 2 M(RE) using the

sequence y, x, s1, . . . , sj, which violates condition (2).
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Note that M(RE) is (trivially) M -consistent, and it is separable with respect to the

countable set {x1
, . . . , x

⌧}[Q. Since, from Lemma 8, M is a rational closure, it follows from

Theorem 1 that M(RE) has a complete extension R

⇤ = M(R⇤) that can be represented by a

utility function. Since M(RE) is monotone and R

⇤ is an extension of M(RE), it follows that

R

⇤ is monotone. This in turn implies that any utility function representing R

⇤ is strictly

increasing.

Since R

⇤ is an extension of M(RE), it follows from conditions (1) and (2) and Lemma 2

that it is an extension of Ri for i 2 {1, . . . , n} as well.

Note that consistency with the monotone closure implies that for every budget Bi there

is no point above the chosen alternative xi; we do not need budgets to be comprehensive to

establish this. This implies that directly observed preferences do not contradict monotonic-

ity. Comprehensive budgets help us in proving that consistency with the monotone closure

implies that preferences built using the closure do not contradict monotonicity either.

5 Generalized Revealed Preference Revisited

Varian (1982) introduces an approach to revealed preference in which observed choices are

revealed to be strictly preferred to alternatives that are in the budget set and that are

cheaper than other alternatives in the budget set, and observed choices are revealed to be

weakly preferred to alternatives that are in the budget set but are not cheaper than other

alternatives. Intuitively, observed choices are possibly indi↵erent to other alternatives in the

budget set.

To formalize this approach in our environment, we assume as in the previous section that

X is endowed with a transitive and reflexive relation �, with strict part denoted by >, and

suppose there is a countable set Q that is dense in X with respect to �; that is, for all

x, y 2 X such that x > y there is Z 2 Q such that x > z > y.

Given a consumption experiment E = (xi, Bi)ni=1, for each i = 1, . . . , I, let Ri and RE be

defined as in the previous section, and let R̃i = {(xi, y) : y 2 Bi\{xi} and y < x for some x 2
Bi} and let R̃E =

S
i R̃i.

We say that an experiment E = (xi, Bi)ni=1 can be rationalized with possibly indif-

ferent choices if there is a monotone preference relation that is a complete extension of

every element in the set {R̃i} and of T (RE) and that can be represented by a utility function.

We have:

Proposition 3. A consumption experiment with comprehensive budgets can be rationalized

with possibly indi↵erent choices by a strictly increasing utility function if and only if (1’)

T (RE) ⌫ R̃i for i 2 {1, . . . , n} and (2’) T (RE) is M-consistent.

The proof is analogous to the proof of Proposition 2.

Adapting the formulation by Varian (1982) to our setting, we can define
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Definition 10. The consumption experiment E = (xi, Bi)ni=1 satisfies the Generalized Axiom

of Revealed Preference (GARP) if (xi, xj) 2 T (RE) implies that there is no y such that

y 2 Bj and y > xi.

With comprehensive budgets, GARP can be restated as (xi, xj) 2 T (RE) ) (xj, xi) /2
R̃j. We claim that Conditions (1’) and (2’) in Theorem 3 are jointly equivalent to GARP

plus the assumption that observed choices are maximal with each budget set, i.e. for any

i 2 {1, . . . , n} there is no y 2 Bi, such that y > xi.

Lemma 9. The consumption experiment E = (xi, Bi)ni=1 with comprehensive budgets satisfies

GARP and maximality of observed choices if and only if (1’) T (RE) ⌫ R̃i for i 2 {1, . . . , n}
and (2’) T (RE) is M-consistent.

Maximality of observed choices is assumed in the original paper by Varian (1982).

Proof. To prove su�ciency, assume first that there is a violation of GARP, that is there is

(xi, xj) 2 T (RE) and (xj, xi) 2 R̃j. Therefore, (xj, xi) 2 P (R̃j) and (xi, xj) 2 T (RE) \
P

�1(R̃j). Hence, R̃j � T (RE), i.e. a violation of (1’). Assume instead there is a violation of

maximality of observed choices, i.e. there is y > xi and y 2 Bi. Then (y, xi) 2 M(T (RE))

and (xi, y) 2 P (T (RE)). Hence T (RE) is not M -consistent, i.e. there is a violation of (2’).

To prove necessity of condition (1’), suppose it is violated. We have then that there is

(xi, xj) 2 R̃i and (xj, xi) 2 T (RE). And (xi, xj) 2 R̃i implies that there is y > xj such that

y 2 Bi; which violates GARP.

To prove necessity of condition (2’), suppose it is violated. Then there is (xi, y) 2
P (T (RE)) and (y, xi) 2 M(T (RE)). Since T (RE) is transitive and > is transitive as well

we can claim that y > xi. At the same time (xi, y) 2 T (RE) implies that there is j, such

that y 2 Bj and xj 2 Bi, hence (xi, xj) 2 T (RE). Recall that budgets are comprehensive,

therefore, xi 2 Bj, because y > xi. Then (xj, xi) 2 R̃j; which violates GARP.

As a corollary of Proposition 3 and Lemma 9, an extended version of GARP (including

maximality of observed choices) is necessary and su�cient for rationalization with possibly

indi↵erent choices by a strictly increasing utility function.

; T -consistency M -consistency
{Ri � RE} WARP SARP
{R̃i � T (RE)} GARP

Table 1: A cheat sheet of consistency conditions and revealed preference axioms

Table 1 above summarizes the relation between revealed preferences axioms and the

conditions on extensions and closures we use to obtain representations. We think of row

conditions as criteria regarding the internal consistency of the observed choices, i.e. the

consistency of each of the observed choices with the complete dataset. By the same token,

we think of column conditions as criteria regarding the external consistency of the dataset,
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i.e. its consistency with theories about how a complete preference ordering should look like.

External consistency conditions grow more demanding as we move from left to right. Internal

consistency conditions cannot be similarly ranked; while P (R̃i) ✓ P (R̃i), P (RE) is not

necessarily a subset of P (T (RE)).

6 Conclusion

In this paper we show that there is a complete extension of an incomplete preference relation

that is fixed point of a mapping over preferences (the rational closure) and can be represented

by a utility function if and only if the original preference relation satisfies a congruence

condition related to the specific mapping. Intuitively, a rational closure is a rule that can

be used to extend an incomplete preference relation. The proof of the theorem relies on

the alternated application of the rational closure and the addition of indi↵erence pairs to

construct the extension.

An advantage of using an explicit rule to construct the complete extension of the original

preference relation is that further desiderata on the utility function can be induced by the

rule. We illustrate this point by revisiting the classical revealed preference problem of the

existence of a rationalization of a sequence of observed choices by means of strictly increasing

utility functions.

Rational closures as defined in this paper construct preferences over each ordered pair

of alternatives not in the original preference relation employing only a finite number of

observations regarding other pairs of alternatives. This “algebraic” requirement is necessary

for the usage of Zorn’s lemma in the proof of existence of the complete extension. However,

this requirement is not compatible with a rule that induces continuity in order to construct

the complete extension. Thus, constructing a continuous extension of the original preference

relation seems an elusive goal in the general case,7 i.e. without assumptions such as Euclidean

consumption spaces and further constraints over budget sets.
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