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Abstract

We experimentally explore and structurally estimate the decision to sell a stock in a setting
similar to a financial market in order to provide an insight on how regret avoidance shapes
decision making. We exploit the dynamic nature of the environment to study the avoidance of
not only past regret, as is common in the literature, but also future regret, which is defined as
the possible experience of regret in the future if an irreversible action has been taken today. In
the experiment participants observe a stock price changing over time and decide when to sell
it. Before the market begins, participants know whether they will observe the future prices
after they sell the stock or not. We find that this information clearly affects the decision to
sell: participants with no future information are affected only by past regret, while, if future
prices are available, they also demonstrate future regret avoidance. Estimation of a structural
dynamic discrete choice model shows that the two types of regret are not complementary:
either past or expected future regret dominates the decision to sell depending on which one
is larger.
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1 Introduction

Regret is a negative emotion associated with an action or inaction which is felt when one wishes
that another choice would have been made. The expression of regret avoidance was found im-
portant in many empirical studies on topics ranging from heart disease prevention in health
economics (Boeri et al., 2013) to auctions (Filiz-Ozbay and Ozbay, 2007; Hayashi and Yoshi-
moto, 2016), financial markets (Fogel and Berry, 2006; Frydman and Rangel, 2014; Frydman and
Camerer, 2016), portfolio and pension scheme selection (Muermann et al., 2006; Hazan and Kale,
2015) and currency hedging (Michenaud and Solnik, 2008). While in some circumstances the
feeling of regret has obvious survival advantages (allowing us to learn from past mistakes or to
avoid negative outcomes) it can also lead to adverse effects, especially when lingered over for
too long (e.g., market bubbles (Qin, 2015)). Understanding regret behaviorally is, therefore, cru-
cial for mitigating the unhealthy effects that this emotion might have on economic and societal
well-being.

Apart from empirical applications, regret avoidance has been studied both theoretically (Sav-
age, 1954; Bell, 1982; Loomes and Sugden, 1987; Skiadas, 1997; Sarver, 2008; Hayashi, 2008;
Bikhchandani and Segal, 2014; Leung and Halpern, 2015) and experimentally (Coricelli et al.,
2005; Camille et al., 2004; Zeelenberg and Beattie, 1997; Zeelenberg et al., 1996; Bleichrodt et al.,
2010; Strack and Viefers, 2015). This research mostly concentrated on static problems where a
single decision is made that can be affected by the information about possible counterfactual
outcomes. Many big real life decisions, like buying a house or pension plan, fit into this setting
and a lot has been learned about regret avoidance since the inception of this research program.
Nevertheless, many interesting phenomena that involve regret have dynamic nature, stock mar-
ket being one important example.1 These situations are characterized by the presence of the time
dimension: a decision or decisions should be made given some past information and/or expec-
tations of the future, both of which change as time unfolds. Regret in this case also becomes a
dynamic variable that is reevaluated in each time period. More importantly, there emerge the
concepts of past and future regret. People try to avoid past regret when they take an action to-
day that brings about an outcome which is the same or similar to the one that was desirable
and could have been achieved in the past but was not. Future regret avoidance involves taking
actions that prevent or mitigate the possible future experience of anticipated regret which can
materialize after making an irreversible decision today.

In this paper we investigate how past and future regret influence choices in a controlled
experimental setting similar to a stock market. Our main interest is to understand how different

1The canonical representation of a dynamic decision task where regret can play a role is the Secretary Problem.
According to Ferguson (1989), this problem was first described in Martin Gardner’s Mathematical Games column
of Scientific American in 1960. A sequence of candidates with an observed characteristic are interviewed. Only one
candidate can be accepted and the rejected candidates cannot be reconsidered. The problem is to choose the best
candidate.
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elements of the dynamic situation interact and influence behavior, in our case the decision to
sell an asset. For example, among other questions we would like to know 1) How strongly does
the avoidance of the past and future regret influence the choice to sell? 2) Is there an interaction
between past and future regret? Does one become stronger or weaker in the presence of the
other? 3) How do risk preferences interact with regret avoidance?

In our experiment, similar to the one in Oprea et al. (2009) and Strack and Viefers (2015),
participants choose in a series of “stock markets:” they observe how the price changes in real
time and choose when to sell an asset that they own. Participants make choices in two types of
markets. In some markets they do not see the future price of the asset after they made their sell-
ing decision. In other markets they do see the future price. In both conditions participants are
informed beforehand about the type of the market they are in. This setup allows us to analyze
both past and future regret and their interaction. In both conditions past regret can potentially
influence participants’ decisions to exit the market since the price history is observable. At the
same time we are able to see if access to the prices after selling has an effect on the decision
making (future regret). More importantly, this design makes it possible to use structural mod-
elling and estimate the parameters of a utility specification that includes past and future regret
components in a dynamic discrete choice setting (e.g. Aguirregabiria and Mira, 2010; Hotz and
Miller, 1993).

It might be argued that our experimental manipulation is artificial since in real markets the
future prices are always available. However, it is always possible for investors to ignore the fu-
ture prices which, for example, can be the case with saving investors who hold highly diversified
portfolios and do not spare much attention to the future price of an asset after they have sold
it. Or conversely, speculating investors might have no choice but to pay too much attention to
the future prices given their goal to repurchase.2 More interestingly, Strahilevitz et al. (2011) find
that investors are reluctant to repurchase a profitable asset after selling it at a low price which
points towards a choice to shy away from considering the future performance of the asset. We do
not study the decision to observe the future prices or not, but rather concentrate on the effect of
the information about the availability of the future prices on the choice to sell.

We find that our participants are influenced by the observable past prices and do behave
differently depending on whether they know that the future prices will or will not be observed
after they exit the market. In particular, we find that in around 70% of cases participants do not
exit the market, as the standard no regret model would predict, but rather stay in the market to
make the effect of past regret smaller or absent. This confirms the results of the recent studies
of dynamic regret avoidance which focus on past regret only (Gneezy, 2005; Strack and Viefers,
2015). We go further and show theoretically that participants who can experience future regret
should wait for higher prices to exit when they expect a high expected future price (as compared

2The repurchase decisions are not considered in this paper, but see Frydman et al. (2014) and Frydman and
Camerer (2016) for the analysis of portfolio decisions with regret averse experimental subjects.
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to the no regret case). Our data show that information about the availability of the future prices
indeed has this expected effect on the decision to sell. More importantly, when the participants
know that they will not observe future prices, their choices to sell are not affected by future regret
avoidance, even though the same calculations of the expected future price could have been made
as in the case when future prices are available.

We also find that the effects of past and future regret are not additive: agents exit at lower
prices on average when both factors are present. With the use of the structural model, we show
the presence of the interaction between past and future regret in the utility function, which
would not be possible to identify with simple regression analysis. We find that past and future
regret are not complements, but rather lessen the effects of one another. This happens because,
while both regret components of the utility function are negative, the interaction term cancels
out the effect of the smaller one. We call this phenomenon a substitution effect between past and
future regret. Participants’ exit choices are not influenced by both types of regret at once, but
rather are guided by the one which is stronger.

One of the policy implications of our results is that agents might be willing to pay for not
knowing the future prices of the asset they are about to sell if they can experience future regret.
This potentially suggests new ways for policymakers to improve market stability and welfare.
In particular, better understanding of the utility maximization involved in selling an asset could
help shaping new financial regulations of common transactions such as short selling (selling
to subsequently repurchase an asset), which could be welfare improving over bans (Beber and
Pagano, 2013).

2 Experimental Data

The data were collected in a behavioral experiment in which participants were presented with a
series of mini stock markets. Each participant observed the graph of a market price as it grad-
ually changed in time in 0.8 seconds intervals and had to decide when to sell an “asset” (see
Figure 1). For the first 15 periods participants could only observe the price. Then, in period
15, they were forced to buy an asset at the current price. The point of entry was marked with
a vertical red line. The market price kept changing until participants decided to exit the mar-
ket (marked with a blue line on the graph). The profit was equal to the exit price minus entry
price. In each market the price followed a stochastic process defined by yt+1 = ! yt + (1 " ! )u,
where ! = 0.6, yt is the price in period t, and u # U[0, 10] is an identically and independently
distributed random variable (uniform between e 0 and e 10).

Each participant made exit decisions in 48 different markets, which could be of two types. In
some markets (Info After condition, left picture in Figure 1) participants knew from the begin-
ning that after exiting the market they will observe the evolution of the price until the market
closure in period 50. This information was shown in the upper-left corner of the graph from
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Figure 1: Screenshots of two markets. Above the graph participants could see the entry
price (Valore di entrata), current price (Valore corrente), exit price (Valore di uscita) and profit
(Guadagno), which was green for positive and red for negative profit. In Info After condition
the price evolution was shown after the exit decision (left picture), in No Info condition the fu-
ture price was not shown (right picture). The sentence at the bottom of the right picture says:
“Please wait until the market is closed.”

period 1 onwards (INFO DOPO means “info after”). In the No Info condition (right picture in
Figure 1) participants knew from the beginning that after they exit the market they will not see
the future price. The details of the design can be found in Appendix A.

The evolution of the price allows us to estimate past and expected future regret in each period
before participants make an exit decision. As in Gneezy (2005) and Strack and Viefers (2015) we
hypothesize that the highest price in the past is a reference point that our participants use to
measure how well they are doing. This is a dynamic variable that changes when the price gets
higher than the current highest peak. We conjecture that the higher is the past peak the more
negative the feeling of past regret should become given the current price (which is always less
than or equal to the highest past peak) and the more influence should the past peak exert on
the decision to exit the market. Similarly, in the Info After condition, when participants know
that after they exit the market they will be shown the future price, they can possibly anticipate
a situation in which the future price will exceed the exit price, which would lead to negative
emotions (future regret). In this case participants’ decisions to exit should be sensitive to the
future expected highest price which is a dynamic variable that depends on the current price and
the number of periods left before market closure.3 In the No Info condition future regret does
not play any role in exit decisions since it is known that the future price will not be observed.

3Sensitivity to future regret is documented in Strahilevitz et al. (2011) who found that investors are less likely to
repurchase a stock that they previously sold and that gained value, as they are “painfully aware” of their loss of
money by selling too early. This phenomenon is explained by the idea that participants try to detach themselves
from a previously sold winning stock to avoid being automatically reminded of their poor judgement. Even though
our experiment excludes repurchase, this event can be classified as a realization of future regret avoidance.
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3 Theoretical Predictions

When investigating regret avoidance in our experiment, it is important to distinguish between
past and future regret. In this section we provide some theoretical predictions on how these two
types of regret should affect the optimal stopping rule. First, we analyze the optimal decision
of an agent with past regret avoidance. This would be the case of participants in the No Info

condition, where, because no information is provided about the after-choice development of the
price, they cannot “regret” foregoing future peaks.4

The effect of past and future regret on the optimal stopping rule is quite intuitive. As in Strack
and Viefers (2015), under past regret (only), the agent incurs disutility from not having stopped
at the past maximum. Suppose his utility in this case is u(yt) " u(sp,t), where sp,t = maxs$ t{ ys} .
Since, by definition, u(yt) " u(sp,t) $ 0, the highest attainable utility is 0, which implies that the
agent should exit the market if he reaches the past maximum. Formally, an agent stops if the
utility at time t is larger than the maximum utility available in any of the following periods:

u(yt) " u(sp,t) % max{ Eyt+1 [u(yt+1) " u(sp,t+1)|yt], Eyt+1 [vt+2|yt]} (3.1)

where vt+2 = max{ Eyt+2 [u(yt+2) " u(sp,t+2)|yt+1], Eyt+3 [vt+3|yt+1]} and
vT = EyT [u(yT) " u(sp,T)|yT" 1].5 Equation 3.1 can be rewritten as

u(yt) % max{ Eyt+1 [u(yt+1) " u(sp,t+1)|yt], Eyt+1 [vt+2|yt]} + u(sp,t). (3.2)

Notice that the max operator is less than or equal to 0. Thus, the optimal policy is to stop in
some vicinity of the current past maximum. Moreover, as u(yt) approaches u(sp,t) from below,
the difference between the utilities in the LHS and RHS of inequality 3.1 becomes larger. Thus,
assuming random utility à la McFadden (1974), we should expect that the probability of exit
increases in u(yt) " u(sp,t). This gives us the first prediction:

Prediction 1. The probability of selling the asset is higher the closer is the price to the past peak.

It should be mentioned that u(yt) " u(sp,t) is a very specific utility function. When fitting
the structural model we assume more generally that the utility is u(yt) " " u(sp,t), where " % 0
is a regret sensitivity parameter. In this case, qualitatively, Prediction 1 should stay the same as
long as " is in the vicinity of 1. When " = 0 the optimal policy for the agent is to sell the asset
whenever its price is above some threshold (e 5 in case u(y) is linear) which is independent of
the past peak (see Appendix B). This means that the less the agent cares about past regret, the
less his exit price is influenced by the past peak.

4There is ample evidence in the neuroscience literature that participants do not regret an outcome if they are not
provided with the counterfactual realization (see Coricelli et al., 2005; Camille et al., 2004).

5By design the participants in the last period are forced to sell at the current price. That is, no decision is taken
at t = T.
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The optimal policy becomes more complex when the agent can also experience future regret,
which is the disutility from observing a price higher than the exit price in the future, given
that this information is available. Notice that the agent cannot be affected by future regret in
isolation from past regret because the past peak is always revealed. Thus, we can detect future
regret avoidance only by comparing two treatments, No Info, where information about future
price is not available and Info After, where it is.

The expectation of the highest future peak at time t denoted by s f ,t is a function of the price
today and the number of periods left until the market closure. s f ,t is the expectation of the
highest maximum achievable in T " t random draws given the current price yt. This quantity is
increasing in yt and decreasing in t (see Appendix E for calculations). Following the steps in the
previous derivation, the agent should stop if

u(yt) " u(sp,t) " u(s f ,t) % max{ Eyt+1 [u(yt+1) " u(sp,t+1) " u(s f ,t+1)|yt], Eyt+1 [vt+2|yt]}

u(yt) % max{ Eyt+1 [á|yt], Eyt+1 [vt+2|yt]} + u(sp,t) + u(s f ,t)
(3.3)

where vt+2 now also includes the expectation over the future peak. In this case, the max operator
is almost always negative.6 By analogy with the case of only past regret, we can say that the
agent always stops if s f ,t $ yt = sp,t. With the idea of random utility in mind, the following
predictions can be tested.

Prediction 2. The probability of selling the asset at any fixed price level increases with time.

Prediction 3. The probability of selling the asset at any fixed price level decreases with the expected
future peak.

Prediction 2 follows from the fact that s f ,t decreases in time and Prediction 3 from the expected
future peak increasing in the current price.

Note that the predictions implied by equations 3.1 and 3.3 with respect to past and future
regret hold for any weakly increasing utility function. In estimating the structural model below
we focus on the class of CRRA utilities u(x) = x1" #" 1

1" # . Clearly, the optimal selling decision
depends not only on past and future regret, but also on the risk aversion parameter. In Appendix
B we show that risk averse agent should optimally sell the asset at a lower price than a risk
neutral agent and risk loving agent should sell at a higher price. Thus, we formulate a prediction
concerning risk attitudes:

Prediction 4. Other things equal, the probability of selling the asset increases in the degree of risk
aversion.

6It can be zero only in the last period if the current price is equal to the past peak, because the future peak in the
last period is necessarily zero.
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4 Descriptive Statistics

In this section we test the predictions outlined above with data summary statistics and regression
analysis. We start with comparisons of the behavior of our participants with the optimal choice
of a regret free agent who should sell the asset whenever the price is above e 5 if he is risk neutral
(in case of risk aversion/seeking the threshold price decreases/increases, see Appendix B). We
analyse the number of times that our participants could have sold the asset at a price above e 5.
On average, each participant did not sell the asset at the price above e 5 6.95 times (SE: 0.15).
This already shows that the behavior is not consistent with the regret free risk neutral agent who
would have exited immediately after the price rose above e 5. If we regress the average number
of times of staying above e 5 on the market condition (No Info or Info After) and the measure
of risk aversion from Holt-Laury task, we find that the most risk loving participants stay at the
price above e 5 for 2 periods longer than the most risk averse participants (coefficient on hl is
" 1.84!!! , p = 0.008).7 This is consistent with Prediction 4 above: risk averse participants should
exit at lower prices than risk loving ones. If we look at the average number of times above e 5
by condition we find that participants stay above price of e 5 on average 6.77 times (SE: 0.15)
in No Info condition and 7.11 times (SE: 0.16) in Info After condition. The latter number is
significantly higher than the former (two-sided Wilcoxon signed-rank test, p = 0.002), which is
consistent with our Prediction 3: participants exit at higher values when they anticipate future
regret. Importantly, notice that this change happens within participants as each one of them makes
choices in both Info After and No Info conditions.

Next we look at the relation between exit choices and the past peak. Overall, participants exit
in 49% of situations when the price reaches past peak. This provides evidence that the past peak
has a strong influence on the exit decisions (Prediction 1). The next question is What modulates
participants’ decision to continue despite reaching the past peak? We group past peaks by how
high they are and find that when the past peak is above e 8 exit happens in 68% of cases, in the
range [7, 8] – in 58%; in the range [6, 7] – in 30%; and in the range [5, 6] – in 2%. This suggests
that when participants decide to continue they take into account the possibility that the price
can grow higher in the future.

To investigate further the influence of a variety of independent variables on the exit choices
we run a logit regression presented in Table 1. The dependent variable rchoice is equal to 1
if participant chooses to stay in a current period and 0 if she decides to exit. First we make
several observations about the control variables. We see that the probability of exit increases
with time (coefficient on period is negative). The coefficients on price and price

2 suggest that
our participants choose as if they have risk seeking preferences. This is the case since they
rarely sell the asset at a price below e 5 (in 10% of all exits) which would be indicative of risk
aversion. Variables positive beta3 and negbeta3 control for the reaction of the participants

7The descriptions of all variables can be found in Appendix C.
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(1) (2) (3) (4) (5)
rchoice $/se $/se $/se $/se $/se
period –0.096!!! –0.103!!! –0.109!!! –0.109!!! –0.095!!!

(0.003) (0.003) (0.003) (0.003) (0.003)
price 0.585!!! 0.234! 0.362!!! 0.362!!! 0.159

(0.107) (0.105) (0.104) (0.104) (0.106)
price

2 –0.167!!! –0.143!!! –0.160!!! –0.160!!! –0.146!!!

(0.010) (0.010) (0.010) (0.010) (0.010)
positive beta3 –0.563!!! –0.528!!! –0.508!!! –0.509!!! –0.528!!!

(0.033) (0.034) (0.033) (0.033) (0.033)
negative beta3 –0.433!!! –0.424!!! –0.531!!! –0.531!!! –0.537!!!

(0.086) (0.088) (0.090) (0.090) (0.093)
future expected value 1.562!!! 1.559!!! 1.546!!! 1.428!!!

(0.113) (0.106) (0.103) (0.089)
past peak 0.475!!! 0.475!!! 0.657!!!

(0.033) (0.033) (0.035)
future expected peak 0.027!!! 0.426!!!

(0.005) (0.015)
past peak&infoafter –0.408!!!

(0.014)
constant 8.060!!! 1.633!! –1.928!!! –1.969!!! –2.411!!!

(0.249) (0.470) (0.519) (0.512) (0.493)
N 98,048 98,048 98,048 98,048 98,048

Table 1: Random effects logit regression of the choice to continue. Errors are clustered by subject.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.

to the derivative of the price estimated using the last three periods. Negative coefficient on
positive beta3 means that the steeper is the price increase, the higher is the probability of exit,
which is consistent with the disposition effect.8 Negative coefficient on negative beta3 implies
that the probability of exit increases also with the steepness of negative trend in price, which can
be related to past regret, as participants want to quit in the vicinity of a recent observed peak.
Positive coefficient on the future expected value shows that the exit behavior is modulated by
future considerations, in particular, higher expected price in the future makes participants stay
longer. This is in line with the findings on off-peak exit choices reported above. Risk preferences
seem to have the predicted effect on the probability of selling. In Appendix D we look at a similar
regression that includes personal measure of risk aversion from the Holt-Laury task. The sign of
coefficients is in line with Prediction 4.

8The disposition effect is a phenomenon documented in the financial literature according to which investors are
more likely to sell winning stocks than losing ones. As they cling on the latter ones, their consumption (utility) is
reduced, because the funds could be divested and employed in other more lucrative assets. Shefrin and Statman
(1985) showed that tax considerations cannot fully explain this phenomenon and suggested that mental accounting,
regret avoidance and self-control as possible answers. Hence, regret is not the only theory used to explain such a
phenomenon. For example, Barberis et al. (2006) propose “narrow framing” (i.e. the assessment of risk in isolation,
without considering the full portfolio risk position), which they link to regret and to a preference for intuitive
choices, while Weber and Camerer (1998) offers an application of prospect theory (Kahneman and Tversky, 1979)
to the disposition effect. See also Barberis et al. (2001) on prospect theory and asset price volatility, and Ebert and
Strack (2015) for a dynamic version of prospect theory.
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Finally, we discuss the main variables of interest: market condition (infoafter), past peak
and future expected peak. The coefficient on past peak is positive and very significant, which
shows that past regret indeed influences exit decisions. The higher is the past peak the longer
participants stay in the market waiting for the price to get closer to it. In the Info After condi-
tion, when future expected peak variable is not zero we also see that the future regret plays a role
in selling the asset. The most interesting result though is concerned with the interaction of past
and future regret avoidance with the market condition. In the No Info condition only past regret
is present and the coefficient on the past peak is equal to 0.696!!! . In the Info After condition
we see a decrease in the influence of past regret on selling decision, coefficient becomes 0.285!!! .
At the same time, future regret becomes very prominent with coefficient 0.430!!! . This directly
shows the effect of information about the availability of future prices on the exit decisions of
our participants: just knowing that future prices will be observed after exit shifts the focus of the
participants from the past prices to future ones.

5 Model

In this section we present the dynamic discrete choice model that will be used for the structural
estimation of the risk and regret parameters of the utility function. Analyzing dynamic discrete
choice problems became popular with the seminal work of John Rust (Rust, 1987) who showed
that single agent dynamic models could be estimated by a nested algorithm. He proposed to
solve the stochastic control problem numerically by nesting the standard nonlinear ML opti-
mization algorithm with the corresponding functional fixed point routine. This is however quite
costly when the state space is large like in our case. Therefore, we use insights from Hotz and
Miller (1993) and Arcidiacono and Miller (2011) and propose a two-step estimation which takes
advantage of the presence of a terminating action (selling the asset).

The main assumptions required in this model are (i) the independence of each market (trial)
and (ii) the absence of unobserved state variables other than the idiosyncratic preferences, %.9

Each market lasts T periods, and participants have discount factor $ ' (0, 1). $ is assumed to be
common knowledge.10 The state space is discretized following the approach proposed by Tauchen
(1986) and reviewed in Aguirregabiria and Magesan (2016).11 A participant’s intertemporal util-

9As described in the previous sections, the data come from a controlled experiment where the current price is
the only random variable which follows a first order Markov process.

10Identification of the discount factor is possible only under an exclusion restriction (Magnac and Thesmar, 2002),
and it is generally hard to estimate consistently. In order to circumvent this issue, we show that the estimations are
robust to different values of $.

11All variables (current price, past peak and future peak) are discretized on the same support in [0.59, 9.32]. The
distance between points is 0.049. See Appendix F for a detailed overview of the procedure used to discretize the
state space.
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ity maximization problem is

E
⇢ T

Â
t=1

$t" 1u(xt|dt)

�
(5.1)

where dt is the participant’s binary choice at time t $ T:

dt =

8
<

:
1, continue

0, sell the asset.
(5.2)

u(á|dt) is the payoff after choosing alternative dt; the observables are described by the realization
of xt, which is a tuple consisting of the current price yt, the past maximum sp,t, and the future
maximum s f ,t. We use a utility function which incorporates past and future regret as well as
risk preferences. That is, we are interested in a utility function of the type u(xt) = U(xt) "
" R(xt), where U(xt) is a CRRA consumption utility function, R(xt) measures regret and " % 0
is a parameter to be estimated. Recovering " tells us whether participants maximize standard
expected utility (" = 0) or face a trade-off between consumption utility and regret avoidance
(" > 0).

The flow (per period) payoff from choice d at period t is ud
t + %d

t where the error term %d
t is

independent of x). The error term is assumed to be %d = %̃d " &%' where %̃d is distributed Type I
Extreme Value with location parameter equal to zero and scale parameter &%. By the properties
of the Type I Extreme Value distribution, the mean of %̃d is &%' where ' is the Euler’s constant. %d

is therefore mean zero.12 Given these preliminaries, denote by V(xt, %t) the value function at the
beginning of period t with %t = { %0

t , %1
t } and define the alternative specific value function (ASVF)

for option j at time t as:

vd(xt) =

8
<

:
0 + $Ed{ vt+1(xt+1)|xt} if dt = 1 (continue)

u(xt) if dt = 0 (sale)
(5.3)

where the payoff of continuing is normalized to 0. Importantly, choosing to sell the stock (dt = 0)
implies zero future payoffs. Therefore, selling is a terminating action. Note that the ex-ante value
function v(xt) (

R
V(xt, %t)dL(%t) is the expectation over the distribution of the error term of

the value function V(xt, %t) = maxd' { 0,1} { vd(xt) + %d} . The error term affects both alternatives
making the actual per period flow payoff of continuing different from zero. This is a key mod-
elling device that captures uncertainty in utility estimates across the two alternatives, which may
result from the unobserved state.

12A similar assumption appears in Murphy (2015).
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The estimation is based on the difference of the two value functions

v1(xt) " v0(xt) = " u(xt) + $
Z

Xt+1

Z

%
max{ v0(xt+1) + %0, v1(xt+1) + %1)} dL(%)dF1(xt+1|xt).

(5.4)
Remember that the transition matrix when the terminating action (action 0) is chosen is zero
for all xt (i.e. F0(xt+1|xt) = F(xt+1|xt, dt = 0) = 0) and, therefore, it does not appear in the
equation. The properties of the Bellman equation make it possible to transform the left hand
side of equation 5.4 with a known function of the Conditional Choice Probability (CCP). Denote
the probability of continuing (action 1) as Pr{ dt = 1|xt} ( p1(xt):13

p1(xt) =
1

1 + exp
�
v0(xt) " v1(xt)

� . (5.5)

Following Hotz and Miller (1993), the inversion of the CCP gives an expression for the value
function that is estimable from choice data using equations 5.5 and 5.6:14

(
�

p1(xt)
�
= ln

�
p1(xt)

�
" ln

�
1 " p1(xt)

�
( v1(xt) " v0(xt) (5.6)

In fact, ( (á) corresponds to the left hand side of equation 5.4. Hence, the difference of the alter-
native specific value functions v1(xt) " v0(xt) is known for every t. The properties of the logit
distribution are helpful to rewrite equation 5.4 in a form that allows for estimation using non-
linear least squares procedure. This is achieved by replacing the dependent variable in 5.4 with
( (p1(xt)) and by substituting the integration on the right hand side with the summation over
all possible points of the discretized support of xt+1

( (p1(xt)) = " u(xt) + $ Â
Xt+1

�
v0(xt+1) " log(Pr{ dt+1 = 0|xt+1} )

�
f 1(xt+1|xt)

= " u(xt) + $ Â
Xt+1

�
u(xt+1) " log(Pr{ dt+1 = 0|xt+1} )

�
f 1(xt+1|xt).

(5.7)

All derivations are available in Appendix G. In equation 5.7 the transition matrix, the conditional
choice probability (and thus ( (á)) and the per period utility function u(xt) need to be estimated.
The standard deviation of the distribution of the error term, &%, is not identified because the
utility function is identifiable only up to a scaling factor.

13In most empirical settings the standard deviation of the Type I Extreme Value distribution is not identified. This
is equivalent to assuming it to be 1.

14Hotz and Miller (1993)’s approach is based on the inversion of the mapping between CCPs and value functions,
which is feasible under the distributional assumption of the unobserved state variable. In addition, Norets and
Takahashi (2013) show that ( (á) is a surjection.
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6 Estimation

The conditional probability of selling the asset (or continuing) is computed directly from the
data using a flexible logit estimator. We exclude periods 15 and 50 since no one sold the asset
in the former (first choice period) and the choice is forced in the latter (last period). The logistic
regressions are, therefore, run separately for each period t ' { 16, ..., 49} . It is important to
stress that there are two policy functions to be estimated for each period. This is because the
experiment has two conditions with different state variables. The CCP for the No Info condition
depends only on the price, the running past maximum of the process and their interactions:

Pr{ dt|No Info} = $1tyt + $2tsp,t + $3tyt & sp,t + $4tyt & s2
p,t + $5ty2

t , (6.1)

while in the Info After condition it also depends on the expected future maximum:

Pr{ dt|Info After} = $1tyt + $2tsp,t + $3ts f ,t + $4tyt & sp,t & s f ,t + $5tyt & s2
p,t & s2

f ,t + $6ty2
t .

(6.2)
To maintain symmetry, the two logistic regressions are very similar. In principle, several other
valid specifications can be used. However, since the sample size shrinks as participants sell
their stocks over time, adding additional covariates may result in a convergence failure of the
estimator.15 Still, the estimates shown below are robust to different specifications of the CCP.16

Figure 2 shows the projections of the time-averaged fitted CCP in the No Info condition.
Specifically, each line represents the estimate of the probability of selling which results from
averaging the fitted values of 34 logit regressions (one for each time period).17 For the prices
below e 6 the probability of selling is the highest when the past peak is e 3, is lower when the
past peak is e 5 and is close to zero for past peaks e 7 and e 8. This means that, when prices are
low, the participants are strongly influenced by the size of the past peak and wait for the price
to become closer to it which corroborates Prediction 1. For the past peaks e 7 and e 8, which are
very common in our data, the probability of selling increases rapidly when the price approaches
e 7. This strongly supports our theoretical predictions in Section 3 and demonstrates that the
past peak indeed serves as a reference point.

Figure 3 illustrates similar projections of CCP in the Info After condition. When both past
and expected future peaks are equal to e 5, the probability of selling does not seem to react to

15The logit estimator returns perfect separation in 1 period (out of 34 regressions) for both CCP estimations. As
mentioned above, this is due to a trade-off between adding more interaction terms and the fact that the data set
shrinks over time, as subjects exit from the sample by selling the asset.

16Differently from this setup, Bajari et al. (2016) use Hermite polynomials in a framework with no terminating
action and multiple choices. Polynomial series have also been successfully used to estimate unknown distributions
in related fields such as empirical auctions (Kim and Lee, 2014). However, the fact that at every period t a number
of agents stop and sell the asset reduces the available data in period t + 1. Using a polynomial series requires more
data then what is available. So the estimation is conducted using the above formulae, which are more parsimonious.

17Thus, CCPs in Figure 2 (and Figures 3 and 4 below) are shown just for illustration. They are out of sample
estimates which do not take into account the influence of the current price on the past peak.
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Figure 2: The effect of the past peak on the probability of selling the asset in the No Info condi-
tion. The conditional choice probability is computed by taking the average of the fitted values
from equation 6.1 for all periods t ' { 16, ..., 49} .

either of them which is due to the substitution effect between the past and future regret discussed
below. However, when the future expected peak rises to e 8, the probability of selling increases
as the price approaches this reference point and plateaus afterwards (validating Prediction 3).
This demonstrates not only the sensitivity of our participants to the future expected peak but
also the non-trivial link between the two types of regret.

Finally, the just mentioned substitution effect between past and future regret is clarified in
Figure 4. The data suggest that the probability of selling, in the presence of both past and future
regret, reacts to only the strongest of the two. In both cases (past peak is e 8, future peak is e 7
and vice versa) the probability of selling reaches its maximum and then plateaus in the vicinity
of price e 8. In one case it reacts to the dominating past peak and in other to the dominating
future peak.

In order to establish a link between regret avoidance and exit decisions in our experiment,
we estimate equation 5.7 by non-linear least squares procedure.18 Identification of the objects
of interest comes from the exogenous variation in price and conditions. The first step requires
the identification of the transition matrix in equation 5.7.19 The regret components are func-

18Chou (2016a,b) characterizes the M-estimator in a very general setting, establishing its asymptotic properties,
and showing an analogy with a linear GMM system.

19Remember that in the experiment the observed state is described by the price yt, the past maximum sp,t and the
expected future peak s f ,t. Denote the state space by xt = { yt, sp,t, s f ,t} .
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Figure 3: The effect of the past peak and the expected future peak in the Info After condition.
The conditional choice probability is computed by taking the average of the fitted values from
equation 6.2 for all periods t ' { 16, ..., 49} .

tions of price (yt is the only random variable) and time. In fact, sp,t = maxs$ t ys and s f ,t =

g(yt, t), where g is a known function that is increasing in the first argument and decreasing in
the second.20 Therefore, Pr{ yt+1, sp,t+1, s f ,t+1|xt, dt = 1} = f 1(yt+1, sp,t+1, s f ,t+1|yt, sp,t, s f ,t) =

f 1(yt+1, sp,t+1, s f ,t+1|yt, sp,t). The transition of the past peak is fully defined by the future price:
if yt+1 % sp,t then sp,t+1 = yt+1 and sp,t+1 = sp,t otherwise. For clarity, consider the following
example: given the information available at period t < T, the expected utility from staying in
the process one period longer, in the Info After condition, is given by

E [u(xt+1)|xt] = Â
yt+1

[1{ yt+1%sp,t} u(yt+1, yt+1, g(á)) + 1{ yt+1< sp,t} u(yt+1, max
s$ t

ys, g(á))] f 1(yt+1|yt).

Finally, the transition of the expected future peak is completely determined by the price and time
according to the function g(yt, t).21

Nonparametric identification is shown in detail in Appendix H.22. We only provide an intu-
ition of the proof here. The most important step is to realize that the ASVF for the continuation

20g might not be strictly monotonic in the two arguments because of the discretization imposed to the data.
21The transition matrix conditional on choosing the terminating action is zero for all xt (i.e. f 0(xt+1|xt) = 0) and

need not be identified or estimated.
22Aguirregabiria and Mira (2010) and Abbring (2010) provide surveys on identification in dynamic discrete choice

models.
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Figure 4: The effects of the past peak and the expected future peak on the probability of selling in
the Info After condition. The conditional choice probability is computed by taking the average
of the fitted values from equation 6.2 for all periods t ' { 16, ..., 49} .

choice (alternative 1) is a contraction mapping. Therefore there is a unique solution to v1(xt).
In addition, the difference of the two value functions is obtained using the CCP (equation 5.5)
of Hotz and Miller (1993). Given that selling is a terminating action, the per-period utility is
found by summing the latter with v1(xt). The proof relies on knowing (i) the distribution of the
unobserved state variable and (ii) the discount factor. The non-identification results in Magnac
and Thesmar (2002) would apply if these two conditions are not satisfied. Therefore, if these two
conditions are met, equation 5.7 is non-parametrically identified.

Despite this identification result, we estimate a parametric version of equation 5.7, which
mirrors that provided in Section 3. The deterministic part of the per-period utility is defined as
follows

u(yt, sp,t, s f ,t) = U(yt; #) " R(sp,t, s f ,t; #) (6.3)

where U(yt; #) = y(1" #)
t " 1

1" # is CRRA with risk aversion parameter # )= 0 and R(á, á; #) is the regret
function and is defined as:

R(sp,t, s f ,t; #) = 1{ No Info } ) 1U(sp,t; #)

+ 1{ Info After }
�
) 2U(sp,t; #) + ! 2U(s f ,t; #) + * 2U(sp,t; #) & U(s f ,t; #)

�
.

(6.4)

The arguments of the regret function are the conditions and the past and expected future peaks.
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The indicator function distinguishes across the utility derived in the two conditions (No Info

and Info After). An interesting feature of the regret function is the presence of an interaction
term between past and future peaks for the Info After condition. The interaction term captures
the cross-partial derivative of the regret function while controlling for the risk aversion, which
allows us to understand the degree of complementarity or substitutability of the two peaks.
The parameters of R(á; #) are free to vary and indicate how strongly participants decisions are
affected by regret. Note in fact that if ) 1, ) 2, ! and * are not significantly different from zero,
the participants are categorized as regret neutral.

7 Results

Table 2 displays the results of estimation of equation 5.7 with the regret term 6.4 by nonlinear
least squares. For the identification it is assumed that the discount factor is known, hence the
table shows utility function coefficients for $ ' { .99, .97, .95} . The results are robust across
different designs, discount factors and discretization of the support.23 Because of the nature and
the length of the experiment, we expect $ to be close to 1 and, therefore, the first column of Table
2 is our preferred model.

Parameter $ = .99 $ = .97 $ = .95

#̂ " 0.249!!! " 0.248!!! " 0.246!!!

(0.005) (0.005) (0.005)
)̂ 1 1.180!!! 1.051!!! 1.032!!!

(0.146) (0.047) (0.028)
)̂ 2 2.099!!! 1.455!!! 1.391!!!

(0.209) (0.117) (0.105)
!̂ 2 1.796!!! 1.187!!! 1.065!!!

(0.035) (0.240) (0.178)
*̂ 2 " 0.190!!! " 0.133!!! " 0.128!!!

(0.037) (0.026) (0.002)

N 97,285 97,285 97,285

Table 2: The estimation of equation 5.7 with the regret term 6.4 in periods 16 to 49 for different
values of the discount factor $. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.

Notice that )̂ 1 and )̂ 2 are positive and significant, which supports the hypothesis that in both
conditions participants experience disutility from past regret which is reflected in their selling
choices (as was also found by Gneezy (2005) and Strack and Viefers (2015)). Most notably, the

23Estimations for different regret functions R(á) and different specifications of the past maximum and discount
factors are provided in Appendix I. The results with different discretization of the support (300 instead of 200 points)
are reported in Appendix J.
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coefficient !̂ is also positive and significant which means that in the Info After condition our
participants are also influenced by future regret avoidance. Moreover, all these coefficients are
large in magnitude as compared to the utility derived from selling the asset which has coefficient
normalized to 1 (see equations 6.3 and 6.4). We also find that subjects are slightly risk seeking as
#̂ is negative but small.

Utility parameters estimates in Table 2 provide strong support for our hypotheses that past
and future regret avoidance plays significant role in the decisions to sell the asset. However, the
utility 6.3-6.4 used in the estimation cannot tell us if future regret is only operational in the Info

After condition, since this specification excludes any future influences in the No Info condition.
Indeed, some evidence that future is taken into account in the No Info condition comes from the
regression analysis in Section 4, where the variable future expected value significantly affects
the probability to sell the asset (Table 1). In order to show that future regret is not playing a role
in the No Info condition we estimate an extended structural model with past and future regret
terms in both conditions.

Parameter $ = .99 $ = .97 $ = .95

#̂ " 0.262!!! " 0.262!!! " 0.261!!!

(0.006) (0.006) (0.006)
)̂ 1 2.195!!! 1.580!!! 1.496!!!

(0.214) (0.120) (0.108)
)̂ 2 2.043!!! 1.373!!! 1.290!!!

(0.211) (0.117) (0.106)
!̂ 1 " 0.763! " 0.279 0.087

(0.359) (0.244) (0.180)
!̂ 2 1.914!!! 1.249!!! 1.097!!!

(0.349) (0.238) (0.177)
*̂ 1 0.062 0.006 " 0.037

(0.037) (0.025) (0.020)
*̂ 2 " 0.193!!! " 0.129!!! " 0.119!!!

(0.036) (0.025) (0.020)

N 97,285 97,285 97,285

Table 3: The estimation of equation 5.7 with the regret term 7.1 in periods 16 to 49 for different
values of the discount factor $. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.

Table 3 shows the estimated parameters of the utility function with the regret term

R(sp,t, s f ,t; #) = 1{ No Info }
�
) 1U(sp,t; #) + ! 1U(s f ,t; #) + * 1U(sp,t; #) & U(sp,t; #)

�

+ 1{ Info After }
�
) 2U(sp,t; #) + ! 2U(s f ,t; #) + * 2U(sp,t; #) & U(s f ,t; #)

�
.

(7.1)

Overall, the parameter estimates of past and future regret in the Info After condition are the
same as in Table 2. The coefficients !̂ 1 and *̂ 1 are not significant except !̂ 1 in the model with
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$ = 0.99. Nevertheless, since in all specifications !̂ 1 and *̂ 1 are close to zero we conclude that
the role of the expected future peak is secondary at best when information on the future prices
after choice is not provided.

Next we turn to the interpretation of the coefficient *̂ 2 on the interaction of past and fu-
ture regret in the Info After condition. Notice that it is negative. This can be interpreted as
a substitution effect between the two types of regret. The size of *̂ 2 allows us to conclude that
participants are only affected by one type of regret at a time. In particular, they pay attention
only to the largest among the two: when either past or future regret is large and the other is
small, the interaction term offsets the effect of the small term.24 Moreover, the presence of the
interaction term implies that participants switch their focus between the past and future regret
dynamically within each market depending on which peak is larger. This suggests that people
can be surprisingly flexible at being past or future oriented when it comes to stopping decisions
in dynamic settings.

7.1 Heterogeneous Risk Preferences

We finish our analysis by testing an idea that our results could be explained by heterogeneity in
risk preferences rather than by regret avoidance. When participants are endowed with heteroge-
neous risk preferences they use different cut-off rules which leads to different optimal stopping
times (prices). This could bias the results shown above. To investigate this issue we run the same
model but assume that # is a binomial random variable

# =

8
<

:
#1 with probability +

#2, with probability 1 " + .
(7.2)

and estimate it by nonlinear least squares procedure. This is equivalent to assuming that agents
belong to two types with different risk attitudes.

The estimation results are displayed in Table 4. The two columns show different specifica-
tions of #2. While #1 is left free to vary in the range (" •, 0.9], #2 is either also free (Estimation 1)
or forced to be 0, in which case the agent is risk neutral and the utility function is linear u(zt) = zt

(Estimation 2).
Both estimations confirm the results in the previous section with respect to regret aversion.

Most subjects display either mild risk loving or risk neutral attitudes, while only a small pro-
portion of them can be categorized as risk seeking. Estimation 1 shows that effectively there is
only one type of risk seeking behavior (#̂2 = " 0.149) similar to the one given in Table 2. In fact,
#’s binomial distribution is degenerate having probability mass only in #2. Moreover, the regret

24This is different from Strack and Viefers (2015). In their model the agent does not experience future regret, as
we define it, but anticipates past regret which takes place in the future. In this framework the agent who anticipates
regret in this way behaves as an expected utility maximizer.
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Parameter Estimation 1 Estimation 2

#̂1 " 2.674!!! " 1.785!!!

(0.475) (0.159)
#̂2 " 0.149!! 0.000

(0.026) (-)
+̂ 0.002 0.024!!!

(0.002) (0.007)
)̂ 1 1.038!!! 1.056!!!

(0.153) (0.138)
)̂ 2 2.342!!! 1.794!!!

(0.231) (0.201)
!̂ 2 1.340!!! 1.534!!!

(0.305) (0.233)
*̂ 2 " 0.016 " 0.035!!

(0.013) (0.012)

N 97,285 97,285

Table 4: The estimation of equation 5.7 in periods 16 to 49 when the risk parameter is a random
variable as defined in 7.2. In Estimation 1 both #1 and #2 are free to vary while in Estimation 2 #2
is forced to be 0. $ is assumed equal to 0.99 in both columns. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.

parameters are consistent with the findings in Table 2, although the interaction term is not sig-
nificant. Estimation 2 shows some variation in risk seeking behavior with a very small fraction
of the population being very risk seeking (#̂1 = " 1.785, +̂ = 2%), while the vast majority of the
agents are risk neutral. The estimates in column 2 corroborate the results previously shown.

Overall, Table 4 supports the empirical evidence above and the predictions put forth in Sec-
tion 3. Future regret matters to participants exposed to additional information and it is dynam-
ically coupled with past regret as participants evaluate past and future foregone opportunities
differently in the same market.

8 Discussion

As in many studies cited above, we find a strong imprint of past regret on the decisions of our
participants in a dynamic optimal stopping experiment. Our main findings, however, lie in
the domain of future regret and can be summarized as follows. First, the participants are able
to contemplate the counterfactual situation in which they sell the asset today and later regret
it when the price goes up (future regret). Moreover, they take this possibility into account by
trying to sell the asset at a price closer to the future expected maximum. Second, the participants
are not always influenced by future regret. They take it into account only when they know that
the information about future prices will be available after they sell the asset. Third, past and
future regret do not work independently. They interact by offsetting each other which leads to
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only the strongest being reflected in the decisions.
Our definition of future regret and future regret avoidance should not be confused with what

is called anticipated (or sometimes also future) regret in the literature (e.g., Strack and Viefers,
2015). The difference is that anticipated regret means that the agent can imagine himself feeling
past regret in the future or, putting it differently, he can imagine himself making a choice later
which is influenced by something that is in the past relative to this future moment of choice. In
our concept of future regret the agent imagines a situation when he feels regret at some moment
in the future about the choice already made in the past. It should be noted that anticipated regret
is also present in our model: in the recursive definition of the value function the agent takes
into account future realizations of past regret. Therefore, our notion of future regret is not a
modification or replacement of anticipated regret, but rather a separate feature that extends the
existing models of dynamic regret. In this light, our detection of future regret in the decisions to
sell is not another instance of anticipated regret, but a truly novel phenomenon.

When comparing the selling behavior in the No Info and Info After conditions, it is im-
portant to note that the conditions differ only in the information provided after the choice was
made. Before the choice, the exactly identical information is conveyed to the decision maker.
Therefore, in principle, it is possible to choose in the same way in both conditions. Namely,
nothing stops the agent from calculating future expected maximum value and act upon it even
if the future prices are not revealed. However, as the estimation of the structural model demon-
strates, this is not the case and the same participant who avoids future regret in the Info After

condition chooses to ignore it in the No Info condition. This is particularly surprising given that
making optimal stopping decisions in our dynamic environment involves calculating future ex-
pected values even without deliberation on future regret. Indeed, the regression analysis in Section
4 shows that in the No Info condition the future expected value of the asset does have a say
in the decision to exit the market, which means that the participants do think about the future,
but just choose to ignore the prospect of feeling future regret (i.e. the expected highest future
price).25 This exposes the complexity of intertemporal choice by the regret averse participants
and, particularly, its sensitivity to context and information available in the future.

The estimation of the structural model shows a significant interaction effect between past
and future regret in the Info After condition. Specifically, this interaction is negative and, thus,
works to counteract the effect of the smaller regret term (past or future). This mechanism, though
static in nature, creates a compelling dynamic effect: the impact of the past and the future on the
probability of selling changes in time as the past and future regret terms change in relative size.
In our experiment this effect is detected within subjects which means that orientation towards
the past or the future can change rapidly depending on the circumstances. More importantly,

25Similar phenomenon is documented in static environments (e.g., Camille et al., 2004; Coricelli et al., 2005; Ble-
ichrodt et al., 2010): when participants are told that they will not observe the counterfactual outcome, they choose
without taking regret into account.
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this implies that the behavior on financial markets can potentially be influenced by seemingly
unrelated events that, nevertheless, refocus the attention of the investors on the past or expected
future developments. For example, in our setting the value of the expected future maximum
depends on the number of periods left before the market closure: for any fixed current price,
the closer is the end, the lower is the expected future maximum. Therefore, sudden news that
the closure will happen earlier should decrease future regret and, thus, make investors more
wary of the past. This can potentially lead to two outcomes: if the past peak was high and was
dominating the expected future peak then nothing should change, however, if the past peak was
low and was dominated by the expected future peak, then early closure can lead to a selling spree
since the dominating regret term, in this case future regret, has decreased.

Our results imply another interesting behavioral effect which is concerned with the poten-
tial choice between observing and not observing the future price after exiting the market. In
particular, the estimates of the utility parameters suggest that having no information should be
preferable to having it ()̂ 1 < )̂ 2 < !̂ 2). So, it is not inconceivable that the investors would be
willing to pay for not being able to observe the future prices of the asset. This can have conse-
quences for policies directed at regulation of stock market trading. Nevertheless, we would like
to stress that the relative size of past and future regret and their interaction is an empirical ques-
tion which requires case by case analysis. Therefore, to understand the incentives that investors
might have due to regret aversion the real financial transaction data should be analyzed.

9 Conclusion

In an experimental task which resembles a stock market we study how past and future regret
avoidance influences selling decisions. We use structural model to evaluate the parameters of a
utility function that incorporates regret avoidance preferences and find that both past and future
regret play an important role in the exit choices. When participants in the experiment know that
after they sell the asset they will no longer see the evolution of the price, their decisions to sell are
strongly influenced by past regret avoidance. Namely, participants stay in the market longer in
order to sell at a price close to the highest past price observed. When participants are aware that
after they sell the stock they will continue to observe the price on the market, their exit choices
change: now future regret avoidance also becomes important. Participants take into account the
anticipated future regret they would experience if the price of the asset increased after they sold
it and try to minimize this effect.

Moreover, we find that past and future regret avoidance do not just influence the decisions
in a simple additive way. They interact with each other. In particular, participants pay more
attention to the type of regret which is more prominent: if past highest peak looms higher than
the expected future peak, then past regret avoidance enters the exit decision. If anticipated
regret in the future is larger than the potential past regret, then future regret avoidance becomes
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important. This substitution effect was not previously mentioned in the literature and may be of
particular interest to policy makers.
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Supplementary Material

A Experimental Design

In the experiment participants made choices in 48 “stock markets,” presented to each of them in random
order. In each market a participant was shown the price dynamics unfolding in real time either until
the asset was sold or until market closure after 50 periods. The price updated each 0.8 seconds. First,
participants observed the market price evolve for 15 periods. Then they “entered” the market. In the
instructions this was presented as if they bought an asset in period 15. After this, participants kept ob-
serving the evolution of the market price and had to decide when to “exit” the market. The payoff, or
profit, that each participant received in each market was equal to the exit price minus the entry price.1

Each participant was making choices in two types of markets, which differed only in the amount of
information that participants received after they have exited the market. In the No Info condition, after
exiting the market, no information about the future evolution of the price was provided. In the Info
After condition, after exiting the market, participants observed how the price changed until the end of
that market. In both cases the participants could not change their decision after they have exited the
market. The market condition (No Info or Info After ) was shown from period 1 on in the upper-left
corner of the market graph (see figures below).

Overall, 135 participants took part in the experiment. All sessions were run in June 2016 at the CEEL
laboratory, Department of Economics, University of Trento. There were no pilots or discarded sessions or
any other data collected for this experiment in any other way. The data for one participant was discarded,
as she had to leave the experiment in the middle of the market task. The experiment was programmed in
z-Tree (Fischbacher, 2007).

A.1 Market Details

The price dynamics for each market was generated randomly using the process yt+1 = ! yt + (1 " ! )u,
where yt+1 is the price in period t + 1, ! = 0.6 is a fixed constant for all markets and u # U[0, 10] is an
iid random variable (uniform on [0, 10]). In period 1 each market started from price e 2.5, e 5 or e 7.5.
Thus, the price changed in the range from e 0 to e 10. All participants saw the same price dynamics
for a given market. Each market lasted for 50 periods, which was known to the participants. In period
15 of each market the participants were forced to enter the market. This was explained to them in the
instructions in terms of their buying an object on the market in period 15 for the current market price (see
instructions in Appendix K). Then the participants were instructed that they can exit the market at any
time before period 50 and that their earnings in that market would be equal to the difference between
the exit price and the entry price (if they did not exit their earnings were equal to the price in period 50
minus the price in period 15). The prices on the market were presented in actual Euros, so no tokens were
used and there was no need for having an exchange rate. All the information about the current market
condition, the entry price, the exit price and the current price was presented on the screen at appropriate
times. Descriptions under Figures 5 and 6 explain.

The timing of each market was as following. The new price was shown each 0.8 seconds.2 This was
long enough for participants to be able to react and exit the market at the current price if they chose to
do so. In the Info After condition participants had to observe the evolution of the price until period
50: they could not skip to the next market. In the No Info treatment, after exiting the market, they had
to wait until the market reached period 50 (without observing the price). This was done in order to 1)

1Participants were paid for only one randomly chosen market. No one could lose money if the profit of the
chosen market was negative, since participants were given an initial endowment.

2The experiment was implemented in z-Tree (Fischbacher, 2007), which does not allow for precise time control.
Thus, the actual time between periods could have been slightly larger.
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Figure 5: The left picture shows the market price evolution before period 15, which is marked by a
vertical red line. At period 15 the market “stopped,” so that participants could inspect the entry price. An
“Enter” button should have been pressed to start the market again. After period 15 the participants could
check the entry price by looking at the top left of the screen where it was indicated in red (right picture).

Figure 6: The left picture shows the market in Info After condition after a participant exited the market
(the period of exit is indicated by a blue vertical line). After exiting the market, the participant could
see the exit price in blue and the profit in green or red, depending on whether the profit was positive or
negative (on top of the screen). In addition, the participant observed the future evolution of the price until
period 50. In the No Info condition (right picture) everything was the same except that the participant
did not observe the future price. The sentence at the bottom of the right picture says: “Please wait until
the market is closed.”

remove the incentive to go quicker through the task and 2) make No Info and Info After conditions as
similar as possible.

A.2 Overall Design Details

Participants chose in 48 markets. The price dynamics for each market was pre-generated using the rule
described above (see Figure 7 below). Thus, each participant chose in exactly the same markets. For the
three subsets of 16 markets the starting price was equal to e 2.5, e 5 or e 7.5. The order of the markets
was randomized in real time for each participant. Thus, there is only an infinitesimal probability that
any two participants saw the same sequence of markets. The market condition, No Info or Info After ,
was determined in the following way. Half of the participants saw markets 1 to 24 in condition No Info
and markets 25 to 48 in condition Info After . Another half of the participants saw these markets in
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the opposite conditions (Info After and No Info accordingly). This allows us to compare the between
participants choices in the two conditions for each market.

When participants exited the market they could see their profit (see Figure 6). However, the partici-
pants were informed that they will be paid for only one randomly chosen market. In order to avoid losses,
the participants were given e 10 at the beginning of the experiment, so their earnings after the market task
were e 10 plus the profit in one randomly chosen market (which could have been negative).

A.3 Additional Tasks

After choosing in the sequence of 48 markets the participants were presented with the Halt and Laury
task (Holt and Laury, 2002). We did not use the original payoffs from Holt and Laury (2002) as our par-
ticipants could have seen those before. Instead we took the equivalent payoffs from Eijkelenboom and
Vostroknutov (2016). The instructions and the screenshots are presented in Appendix L.2. The partici-
pants, in addition to their earnings in the market task, received the payoff from one of the lotteries that
they chose in the Holt and Laury task.

In the end of the experiment, apart from the standard demographic questions, the participants were
given a sequence of small problems which constitute several varieties of CRT task put together. Appendix
L.3 provides the details.
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A.4 Market Prices
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Figure 7: Prices in 48 markets.
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B Proof of Prediction 4

Proposition 1. In the case without regret risk averse agents stop earlier than risk seeking agents.

Proof. An agent without regret stops if

u(yt) % max{ Eyt+1 [u(yt+1)|yt], Eyt+1 [vt+2|yt]} (B.1)

where vt+2 = max{ Eyt+2 [u(yt+2)|yt+1], Eyt+2 [vt+3|yt+1]} and vT = EyT [u(yT)|yT" 1]. Assuming that agent
has CRRA utility function, this implies that the stopping rule is

y1" #
t % max{ Eyt+1 [y

1" #
t+1 |yt], Eyt+1 [v̇t+2|yt]} (B.2)

where v̇t+2 = max{ Eyt+2 [y
1" #
t+2 |yt+1], Eyt+2 [v̇t+3|yt+1]} and v̇T = EyT [y

1" #
T |yT" 1].

Let ṽt denote the value function in inequality B.1 with u(yt) = yt and let ỹt be the price at which a risk
neutral agent is indifferent whether to sell the asset or not:

ỹt = max{ Eyt+1 [yt+1|ỹt], Eyt+1 [ṽt+2|ỹt]} (B.3)

Would a risk seeking (averse) agent stop at the same value or continue? The answer depends on #. Agent
stops at ỹt if and only if

ỹ1" #
t % max{ Eyt+1 [y

1" #
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]} . (B.4)

Plugging B.3 into B.4 we get

max{ Eyt+1 [yt+1|ỹt]
1" #, Eyt+1 [ṽt+2|ỹt]

1" #} % max{ Eyt+1 [y
1" #
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]} . (B.5)

This inequality holds (strictly) only for a risk averse agent with # ' (0, 1). To show this we start from
period T " 1. Notice that

EyT" 1 [ṽT |yT" 2]
1" # =

 

Â
,

Pr{ yT" 1,,|yT" 2} EyT [yT |yT" 1,,]

!1" #

and

EyT" 1 [v̇T |yT" 2] = Â
,

Pr{ yT" 1,,|yT" 2} EyT [y
1" #
T |yT" 1,,]

(B.6)

where, given yT" 2, , enumerates all possible values of yT" 1 denoted by yT" 1,,. Next notice that the RHS’s
of B.6 can be rewritten as

 

Â
,

Pr{ yT" 1,,|yT" 2} Â
- ,

Pr{ yT,- , |yT" 1,,} yT,- ,

!1" #

=

 

Â
.

p. yT,.

!1" #

and

Â
,

Pr{ yT" 1,,|yT" 2} Â
- ,

Pr{ yT,- , |yT" 1,,} y1" #
T,- ,

= Â
.

p. y1" #
T,.

(B.7)

respectively. Here - , enumerates yT for each , and . enumerates all combinations of , and - ,. Now, the
RHS of the first equation in B.7 is bigger than the RHS of the second by strict concavity of (á)1" #. Thus we
can conclude that EyT" 1 [ṽT |yT" 2]1" # > EyT" 1 [v̇T |yT" 2] for all # ' (0, 1).

Now we consider period T " 2. For some fixed yT" 2 we want to show that

max{ EyT" 1 [yT" 1|yT" 2]
1" #, EyT" 1 [ṽT |yT" 2]

1" #} > max{ EyT" 1 [y
1" #
T" 1|yT" 2], EyT" 1 [v̇T |yT" 2]} . (B.8)
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This is straightforward since we have just shown that EyT" 1 [ṽT |yT" 2]1" # > EyT" 1 [v̇T |yT" 2], which are
the second terms of the max operators. According to the same strict concavity argument as above,
EyT" 1 [yT" 1|yT" 2]1" # > EyT" 1 [y

1" #
T" 1|yT" 2], the first terms of the max operators. Thus, LHS max operator

has all terms bigger than corresponding terms of the RHS max operator, which proves that the inequality
B.8 holds.

Since B.8 holds for all yT" 2, it is true that

EyT" 2 [ṽT" 1|yT" 3]
1" # = EyT" 2 [max{ EyT" 1 [yT" 1|yT" 2]

1" #, EyT" 1 [ṽT |yT" 2]
1" #}| yT" 3] >

EyT" 2 [max{ EyT" 1 [y
1" #
T" 1|yT" 2], EyT" 1 [v̇T |yT" 2]}| yT" 3] = EyT" 2 [v̇T" 1|yT" 3].

(B.9)

This is a precursor to the one more step of the same derivation for period T " 3 as EyT" 1 [ṽT |yT" 2]1" # >
EyT" 1 [v̇T |yT" 2] was for the period T " 2 step. Therefore, iterating this process, we show that B.4 holds
with strict inequality for all t as long as # ' (0, 1). When the agent is risk seeking, or # < 0, B.4 holds
strictly with the opposite sign. The proof is the same only with all > replaced by < .

Next we show that for any admissible # and each period there is a unique threshold such that an agent
with CRRA utility, who follows optimal policy, always stops above this threshold and always continues
below it. Notice that Eyt+1 [y

1" #
t+1 |yt] = E%[(! yt + (1 " ! )%)1" #] is a strictly increasing continuous function

of yt.3 Consider m(yt) = max{ Eyt+1 [y
1" #
t+1 |yt], Eyt+1 [v̇t+2|yt]} . This is a function of yt that for some yt

is equal to E%[(! yt + (1 " ! )%)1" #] and for some yt to Eyt+1 [v̇t+2|yt]. Now, we can use the expressions
v̇/ = max{ Ey/ [y

1" #
/ |y/ " 1], Ey/ [v̇/ +1|y/ " 1]} for all / % t + 2 to expand Eyt+1 [v̇t+2|yt] into a sequence of

expectations and max operators. Thus, eventually, m(yt) is a piecewise function that is equal to E%[(! yt +
(1 " ! )%)1" #] or pieces of weighted averages of functions of the form

Eyt+1 [...Ey/ [y
1" #
/ |y/ " 1]...|yt] = E%t+1 ...E%/ [(!

/ " tyt + (1 " ! / " t)E/ )
1" #] (B.10)

where E/ is a weighted average of random variables %t+1, %t+2, ..., %/ . All functions in B.10 are continuous
and strictly increasing in yt. Therefore, m(yt) is a continuous and strictly increasing since it is a series of
max operators applied to weighted averages of continuous increasing functions. It is also true that m is
strictly concave (convex) for # ' (0, 1) (# < 0), which also follows from the fact that it is a series of max
operators of weighted averages of strictly concave (convex) functions.

Now, we would like to know the relationship between m(yt) and y1" #
t . This will tell us what the

optimal policy is. Notice that m(0) > 01" # and m(10) < 101" # since m(yt) consists of mean reverting
expectations. So for low yt the optimal policy is to continue and for high yt to stop. It is left to show that
m(yt) crosses y1" #

t at a single point. Consider any point y where y1" # = m(y). We want to show that at
this point the derivatives of y1" # and m(y) are different. As was mentioned above, m(y) is a weighted
average of functions in B.10. Thus,

y1" # = Â
,

p,E%t+1 ...E%/ ,
[(! / ," ty + (1 " ! / ," t)E/ ,)

1" #] = Â
,

p,E/ , [(!
/ ," ty + (1 " ! / ," t)E/ ,)

1" #] (B.11)

for some enumeration { p,, / ,} , and with E/ , being short for E%t+1 ...E%/ ,
. Notice that the derivatives of

functions B.10 with respect to yt are of the form ! / " t(1 " #)E/ (! / " tyt + (1 " ! / " t)E/ )" #, since E/ trans-
forms into a summation of the terms (! / " ty + (1 " ! / " t)E/ )1" # weighted with some probabilities and the
derivative transcends summation. Keeping this in mind let us rewrite B.11 as

(1 " #)y" # = Â
,

p,! / ," t(1 " #)E/ , [(á)
" #] +

1 " #
y Â

,
p,E/ , [(1 " ! / ," t)E/ ,(á)

" #] (B.12)

3Here and below %, possibly with sub-indexes, is a uniformly distributed random variable on [0, 10].
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where (á)" # stands for (! / ," ty + (1 " ! / ," t)E/ ,)
1" #. This, in turn, can be seen in terms of derivatives

(1 " #)y" # =
dm(y)

dy
+

1 " #
y Â

,
p,E/ , [(1 " ! / ," t)E/ ,(á)

" #]. (B.13)

Here LHS is the derivative of LHS of B.11 at y and RHS is the derivative of m at y plus a positive number.
Thus, at y the derivative of y1" #

t is higher than the derivative of m(yt). This implies that these two func-
tions cross at a unique point: they cannot coincide on an interval, since then their derivatives would have
been equal and they cannot cross on a disjoint set since this would have contradicted strict concavity or
convexity of m.

Thus, we have established that the optimal policy for any CRRA utility function is to stop above some
unique threshold yt and to continue below it. Combining this observation with the result that risk averse
agent stops at a price where risk neutral agent is indifferent and that risk seeking agent continues at that
price, we can conclude that risk averse agent must have stopping threshold at a price below risk neutral
agent and risk seeking agent must have the threshold above it. Therefore, risk averse agent, given the
same prices, stops before risk neutral agent and risk seeking agent stops after. !
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C Description of the Variables

Variable Range Definition
rchoice 0/1 is 1 if participant stays in the market and 0 if she exits
infoafter 0/1 is 1 if market condition is Info After and 0 if the

condition is No Info
period [15, 50] time period
price [0, 10] current price
price 2 [0, 100] current price squared
positive beta3 [0, 2.36] derivative of the observed price over the past 3 peri-

ods. 0 if negative
negative beta3 [0, 2.47] derivative of the observed price over the past 3 peri-

ods. 0 if positive
future expected value [1.70, 7.75] expected future price conditional on the current

price
past peak [2.5, 8.56] past peak
future expected peak [0, 8.39] highest expected future peak conditional on the cur-

rent price. 0 if the condition is No Info
hl [0, 1] risk aversion parameter from Holt and Laury task

(normalized from [0, 10])

Table 5: Variables used in regressions.
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D Additional Regressions

(1) (2) (3) (4) (5)
rchoice $/se $/se $/se $/se $/se
period –0.103!!! –0.100!!! –0.108!!! –0.107!!! –0.093!!!

(0.003) (0.004) (0.004) (0.004) (0.004)
price 0.234! 0.227 0.361!! 0.356!! 0.158

(0.105) (0.116) (0.116) (0.115) (0.116)
price

2 –0.143!!! –0.144!!! –0.161!!! –0.161!!! –0.147!!!

(0.010) (0.011) (0.011) (0.011) (0.011)
positive beta3 –0.528!!! –0.524!!! –0.501!!! –0.504!!! –0.522!!!

(0.034) (0.036) (0.036) (0.036) (0.036)
negative beta3 –0.424!!! –0.438!!! –0.558!!! –0.561!!! –0.552!!!

(0.088) (0.094) (0.096) (0.096) (0.099)
future expected value 1.562!!! 1.597!!! 1.599!!! 1.585!!! 1.458!!!

(0.113) (0.134) (0.125) (0.122) (0.104)
past peak 0.509!!! 0.507!!! 0.696!!!

(0.037) (0.037) (0.040)
future expected peak 0.028!!! 0.430!!!

(0.005) (0.017)
past peak&infoafter –0.412!!!

(0.015)
hl –0.657! –0.662! –0.660! –0.649

(0.331) (0.335) (0.335) (0.335)
constant 1.633!! 1.808!! –2.003!! –2.024!! –2.495!!!

(0.470) (0.583) (0.644) (0.636) (0.623)
N 98,048 77,522 77,522 77,522 77,522

Table 6: Random effects logit regression of the choice to continue with risk preferences. Errors
are clustered by subject.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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E Computing Future Regret

At period t future regret is defined as the expectation of the highest order statistic of the future T " t
prices. At every period t ' { 2, ..., T} , yt+1 = ! yt + (1 " ! )ut is observed, where ut is an i.i.d. random
draw from the uniform distribution on [a, b]. We use the notation yk

t to indicate the price expected in
period t given the current price in period k. T, ! and yk (price at time k) are known. Assume a given
period k ' { 1, ..., T " 2} , noting that the expected future peak in the period before the last is just the
expectation of the price in the next period. Then we can recover the expected price for any future period
beyond the current period (* t > k) with the following formula:

yk
t = ! t" kyk + (1 " ! )

t" k

Â
j=1

ut" j!
j" 1 (E.1)

The distribution of yk
t is

P{ yk
t $ v} = P{ ! t" kyk + (1 " ! )

t" 1

Â
j=k

ut" j!
j" 1 $ v}

= F(t" k)(v) =
Z v

0
f(t" k)(s)ds

(E.2)

where f(t" k)(s) is the pdf of the sum of (t " k) uniform distributions with different supports. The support
of this distribution is (! t" kyk, ! t" kyk + 10(1 " ! )Ât" k

j=1 ! j" 1). This is again when all u’s are 0 or all u’s are
10. Note that when t " k = 1 f(1)(s) = 1

! yk+(1" ! )10" ! yk
= 1

(1" ! )10 and F(1)(s) =
s" ! yk
(1" ! )10 .

The future regret is computed as:

Future Regretperiod k =
Z 10

0
vd

T" k

’
j=1

F(j)(v)

=
Z 10

0
v

T" k

Â
j=1

f(j)(v)
T" k

’
h)=j

F(h)(v)dv

=
Z 10

0
v

T" k

Â
j=1

f(j)(v)
T" k

’
h)=j

Z v

0
f(h)(s)ds dv

(E.3)

To derive f(t" k)(v) analytically we use the results in the statistical literature (Potuschak and Muller,
2009). For simplicity assume that k = 1. In fact, the random variable in equation E.1 is the sum of
independent uniformly distributed [0,10] random variables times (1 " ! ) & ! j" 1, plus ! t" 1 y1

t" 1 , which is
equal to the summation of t " 1 uniformly distributed random variables in [! t" 1 y1

t" 1 , ! t" 1 y1
t" 1 + 10(1 "

! )! j" 1], * j ' { 1, ..., t " 1} . According to Potuschak and Muller (2009, section 2.2.2, page 180), the density
is

f(n)(s) =
1

2n(n " 1)! ’k ak

2n

Â
j=1

&j max{ a.%j " |s " Â
k

ck|, 0} n" 1 (E.4)

where . indicates the dot product, lower bar means vector, a = { 5(1 " ! ), 5! (1 " ! ), 5! 2(1 " ! ), ...5! t" 1(1 "
! )} , c = { ! t" 1 y1

t" 1 + 5(1 " ! ), ! t" 1 y1
t" 1 + 5! (1 " ! ), ! t" 1 y1

t" 1 + 5! 2(1 " ! ), ...! t" 1 y1
t" 1 + 5! t" 1(1 " ! )} , * 1 $

j $ t " 1. &j and %j are matrices which deal with positive and negative signs (see Potuschak and Muller
(2009) for more information). We can rewrite the distribution as follows:
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P{ y1
t $ v} = F(t)(v) =

Z v

0
f(t" 1)(s)ds (E.5)

The support of this distribution is [! t" 1y1, ! t" 1y1 + 10(1 " ! )Ât" 1
j=1 ! j" 1]. Note that f(1)(s) = 1

! y1+(1" ! )10" ! y1
=

1
(1" ! )10 and F(1)(s) =

s" ! y1
(1" ! )10 .

E.1 Normal Approximation

Equation E.4 is problematic, because, as the number of uniform RVs to be summed increases, the denom-
inator goes to zero since ak + 0. This makes estimation intractable. Another unappealing feature of this
equation is that computation is extremely slow. Therefore, we follow Potuschak and Muller (2009) who
proposed to approximate f(n)(v) = f(t" k)(v) with the following normal distribution.

yk
t # N

�
Â

k
ck, Â

k

(2 & ak)2

12
�

(E.6)

The approximation is based on the fact that the sum of uniform distributions is centered around Âk ck
with the variance 1

12 (b " a)2, where b and a are the upper and lower bounds of the sum of uniform distri-
butions.

It can be shown that the sum of such i.n.d. uniformly distributed random variables converges to a
normal distribution by the Liapounov Central Limit Theorem. The condition for convergence is:

lim
N+ •

ÂN
i=1 E[|yi " µi|2+$]

(ÂN
i=1 &2

i )
2+$

2

= 0, (E.7)

for some choice of $ > 0, where E[yi] = µi and V[Xi] = &2
i . To see this assume $ = 1 for simplicity and

denote Xi = yi " µi. Because µi = ci and the support of yi is [ci " ai, ci + ai], Xi is uniformly distributed
in the interval [" ai, ai] = [" 5(1 " ! )! i" 1, 5(1 " ! )! i" 1]. The numerator of the CLT condition involves
E[|Xi|3] =

R ai
" ai

|s|3 fi(s)ds =
R ai

" ai
|s|3 1

2ai
ds. Solving the integral we get:

E[|Xi|3] =
1

2ai

1
4ai

s4sgn(s)
��ai
" ai

=
125
4

(1 " ! )3! 3(i" 1)
(E.8)

Therefore, the numerator is 125
4 ÂN

i (1 " ! )3! 3(i" 1). Similarly, the denominator can be rewritten using

the formula for the variance of the normal distribution as
� 25

3
� 3

2
�

ÂN
i (1 " ! )2! 2(i" 1)� 3

2 (use the fact that
&2

i = 1
12 (ci + ai " (ci " ai))2 = 1

12 (2 & ai))2). Taking the ratio of these two quantites, the result is W &
ÂN

i (1" ! )3! 3(i" 1)

�
ÂN

i (1" ! )2! 2(i" 1)
� 3

2
, where 0 < W < 1 is a constant. Finally, we can establish that:

lim
N+ •

=
ÂN

i=1 E[|Xi|3]

(ÂN
i=1 &2

i )
3
2

= W & ÂN
i=1(1 " ! )3! 3(i" 1)

�
ÂN

i=1(1 " ! )2! 2(i" 1)
� 3

2

= 0

(E.9)

because the denominator contains positive interaction terms. Therefore, Â yi # N
�

Âk ck, Âk
(2& ak)

2

12
�
.
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Figure 8: pdf, sum of 3 uniform RVs Figure 9: pdf, sum of 13 uniform RVs

Figure 10: CDF, sum of 3 uniform RVs Figure 11: CDF, sum of 3 uniform RVs
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F Discretization of the state space and transition matrix

After discretization of the state space, the process describing the evolution of the price at each period
of time can be represented by a discrete Markov chain. In fact, the only determinant of price in the
next period is the price in the previous period. The discretization is done following Tauchen (1986) and
Aguirregabiria and Magesan (2016).

The stochastic shock follows the following AR(1) process:

yi,t+1 = µ + #yi,t + % (F.1)

where yi,t+1, yi,t are the prices for participant i = { 1, ..., N} at time t + 1 and t respectively, and %#
N(0, &2

i ). This panel structure is composed of 48 sequences (the individual dimension) and 50 periods
(the time dimension). µ̂ and #̂ are found using the covariance estimator. The estimates are µ̂ = 1.9745,
#̂ = 0.6015 and &̂ = 1.1613. The estimate of # seems to be very close to the parameter ! which updates the
price from period yt to yt+1 (! = 0.6).

Let { y1, ..., yK} denote the support of the discretized variable Ỹi,t, where y1 > y2 > ... > yK" 1 > yK

with K = 200 are the points in the support. Tauchen (1986) suggests using

yK =
µ

1 " #
+ m &

✓
&2

1 " #2

◆ 1
2

y1 =
µ

1 " #
" m &

✓
&2

1 " #2

◆ 1
2

(F.2)

and yk are K " 2 equidistant points within yK and y1, such that the distance between any two points is
) . m is the density of the K points (m is set to 3). This choice of the parameters results in a support with
lower bound (y1) equal to e 0.5937, upper bound (y200) equal to e 9.3163, and interval between adjacent
points () ) equal to e 0.0438.

The probability of transitioning from state y to y, is defined as pi,j = Pr(y, = yj|y = yi), which de-
scribes the element in the transition matrix in row i and column j. Because of the normality assumption,4
the transition probability to a state k, 1 < k < K, from i is:

pi,k = F
✓

yk + )
2 " µ̂ " #̂yi

&̂

◆
" F

✓
yk " )

2 " µ̂ " #̂yi

&̂

◆
(F.3)

which can be thought as the probability that #yi + %' [#yj " )
2 , #yj + )

2 ]. Analogously, the transition
probability to the first and last state are:

pi,1 = F
✓

y1 + )
2 " µ̂ " #̂yi

&̂

◆

pi,K = 1 " F
✓

yK " )
2 " µ̂ " #̂yi

&̂

◆ (F.4)

Tauchen (1986) shows that this conditional distribution converges in probability to the true conditional
distribution for the stochastic process in equation F.1.

4The standardization implies that the distribution is a standard normal.
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G Full derivation of the dynamic discrete choice model

At each time t $ T, a participant faces a binary choice, dt ' { 0, 1} , such that

Dt =

(
1, continue
0, sell the asset.

(G.1)

Participants optimize the following expression:

E
⇢ T

Â
t=1

0t" 1ut(xt|dt)

�
(G.2)

where ut(á|dt) is the payoff for choosing alternative dt; the observables are described by the realization
of xt. Assume there are no unobservable state variables for the time being. The flow (per period) payoff
from choice d at period t is ud

t +%d
t . i.e. the error term (%d

t is additive and independent on x). The error term
is assumed to be Type I Extreme Value with scale parameter &%. %d = %̃d " &%' where %̃d is distributed Type
I Extreme Value with location parameter equal to zero and scale parameter equal to &%. By the properties
of the Type I Extreme Value distribution, the mean of %̃d is &%' where ' is the Euler’s constant. %d is
therefore mean zero. A similar assumption appears in Murphy (2015). Call V(xt, 1t) the value function
at the beginning of period t for 1t = { %0

t , %1
t } . Define the ex-ante conditional value function for option j at

time t as:

vd(xt) =

(
0 + $V(xt+1|xt, dt = 0) if dt = 1 (continue)
u(xt) if dt = 0 (sale)

(G.3)

where the payoff of continuing is normalized to 0. Note that choosing to sell the asset implies null future
payoffs (terminating action).

G.1 Bellman equation

The ex-ante value function in eq. (G.3), can be rewritten as the expectation over the error term, %t, of the
value function at time t

v(xt) (
Z

V(xt, %t)dL(%t) (G.4)

where L(á) is the type 1 extreme value distribution and V(xt, %t) = maxd' { 0,1} { vd(xt) + %d} . Define the
alternative specific value function (ASVF) as:

vd(xt) = ud(xt) + $Ed{ vt+1(xt+1)|xt} . (G.5)

Because of the property of the Bellman equation, the optimal decision rule can be summarized as follows:

dt =

(
1 if v1

t (á) " v0
t (á) % %0

t " %1
t

0 otherwise.
(G.6)

where vd(á) is defined as in eq. (G.5). Denote the Conditional Choice Probability (CCP) of continuing
(action 1) as Pr{ dt = 1|xt} ( p1(xt):

p1(xt) =
exp( v1(xt)

&%
)

exp( v1(xt)
&%

) + exp( v0(xt)
&%

)
=

1

1 + exp( v0(xt)" v1(xt)
&%

)
(G.7)
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where &%is the variance of the logit distribution. Therefore p1(xt) = L{ v1(xt) " v0(xt)} where L{á} is a
type 1 extreme value distribution. Due to the properties of L{á}:

(
�

p1(xt)
�

( ln
�

p1(xt)
�

" ln
�
1 " p1(xt)

�
(

v1(xt) " v0(xt)
&%

(G.8)

( (á) is estimable from choice data using eqs. (G.7 - G.8). Hence the difference in the alternative specific
value functions, v1(xt) " v0(xt), is known for every t.

We can finally rewrite the two ASVFs as follows:

v0(xt) = u(xt)

v1(xt) = $
Z

Xt+1

Z

%
max{ v0(xt+1) + %0, v1(xt+1) + %1)} dLdF1(xt+1|xt).

(G.9)

where the expectation in the second equation is only over the continuation alternative (1), because the
transition matrix in case the absorbing choice (0) is chosen is zero for all xt (i.e. F0(xt+1|xt) = F(xt+1|xt, dt =
0) = 0). The estimation is based on the difference of these two value functions:

v1(xt) " v0(xt) = " u(xt) + $
Z

Xt+1

Z

%
max{ v0(xt+1) + %0, v1(xt+1) + %1)} dLdF1(xt+1|xt) (G.10)

where equation G.8 describes the left hand side, once &%(unknown) is also taken into account. The prop-
erties of the logit distribution are helpful to rewrite equation G.10 in a form that allows for estimation by
non-linear least squared. In fact, the alternative-specific value function for continuing (second equation
in G.9) can be rewritten as follows

v1(xt) = $
Z Z

max{ v0(xt+1) + %0, v1(xt+1) + %1} dLdF1(xt+1|xt)

= $&%

Z
' + log

�
exp(

v0(xt+1) " &%' )
&%

+ exp(
v1(xt+1) " &%'

&%
)
�
dF1(xt+1|xt)

= $&%

Z
' + log

✓�
1 +

exp(v1(xt+1) " v0(xt+1))
&%

�
exp(

v0(xt+1) " &%'
&%

)

◆
dF1(xt+1|xt)

= $&%

Z �u(xt+1)
&%

" log(Pr{ dt+1 = 0|xt+1} )
�
dF1(xt+1|xt)

(G.11)

where ' is the Euler’s constant, and the last row uses the identity in equation G.7. The " &%' in the second
row appear because the error term is supposed to be mean zero. Therefore the difference of the two
alternative-specific value functions in G.10 becomes

v1(xt) " v0(xt)
&%

= "
u(xt)

&%
+ $

Z �v0(xt+1)
&%

" log(Pr{ d, = 0|xt+1} )
�
dF1(xt+1|xt) (G.12)

by replacing ( (p1(xt)) as the dependent variable and by substituting the integration for the summation
we obtain the following objective function

( (p1(xt)) = "
u(xt)

&%
+ $ Â

Xt+1

�v0(xt+1)
&%

" log(Pr{ dt+1 = 0|xt+1} )
�

f 1(xt+1|xt)

= "
u(xt)

&%
+ $ Â

Xt+1

�u(xt+1)
&%

" log(Pr{ dt+1 = 0|xt+1} )
�

f 1(xt+1|xt).
(G.13)
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H Nonparametric identiÞcation

Consider the following assumptions:

Assumption 1: Additive separability. The flow utility is separable in the observables and unobservable
arguments, U(dt, xt, %) = ud(xt) + %d

t .

Assumption 2: The unobservables are iid. The unobservable state variables, %t = (%0
t , %1

t ), are iid across time.
Moreover %d

t is distributed Type I Extreme Value.

Assumption 3: Transition matrix. Next period state variables, xt+1, are independent on the realization of
this period unobservable state variables, %t. The support of the observable state variables is finite and
discrete. The transition across periods follows a first order Markov process.

Assumption 4: Flow utility. The flow utility of action 1 (continue to next period) is zero. Action 0 is a
terminating action.

Assumption 5: Discount factor. The discount factor is known ($ ' (0, 1)).

Nonparametric identification of the utility function is obtained employing a contraction mapping
argument.5

The identification of the transition matrix is obtained directly from the data according to equation 5.5.
Therefore, Dv(xt) = v1(xt) " v0(xt) is known. Also, as a reminder, the alternative specific value functions
are defined by

vd(xt) =

(
0 + $Ed{ vt+1(xt+1)|xt} if dt = 1 (continue)
u(xt) if dt = 0 (sale)

Step 1: Define the function Ĥ(r0, r1|xt) = E [maxd' { 0,1} { rd +%d}| xt]. Under the distributional assumption
on the error term6, Ĥ(á|xt) exists and has the additive property: Ĥ(r0 + " , r1 + " |xt) = Ĥ(r0, r1|xt) + "
(see Rust (1994) and Magnac and Thesmar (2002)). This property is useful as it allows us to rewrite the
emax function as the sum of a known object and an unknown function:

Ĥ(v0(xt), v1(xt); xt) = Ĥ(v0(xt) " v1(xt), 0|xt) + v1(xt) ( Ĥ(Dv(xt), 0|xt) + v1(xt) (H.1)

where Ĥ(Dv(xt), 0|xt) is identified because the difference in value function, Dv(xt) = v0(xt) " v1(xt), and
the distribution of the error term, L(á), are known. To simplify the notation set Ĥ(xt+1) = Ĥ(Dv(xt), 0|xt).

Step 2: The alternative specific value function when the participant chooses to continue, v1(xt), is the
unique solution of a functional equation. The following Lemma proves that v1(xt) is a contraction.

Lemma: Denote by X the space of the observables and by C(X ) the Banach space of all continuous,
bounded functions ) : X + R . And define the operator G : C(X ) + C(X ) by:

G) (x) = $E1{ ) (xt+1)|xt} (H.2)

Then, under the supremum norm, ||) || = supx' X |) (x)|, G is a contraction mapping with modulus $.

Proof: For any two functions ) , )̂ ' C(X ), we need to establish that ||G) " G)̂ || $ µ||) " )̂ ||, for
µ ' (0, 1). First, rewrite E1{ ) (xt+1)|xt} = E [maxd' { 0,1} { ) d(xt+1) + %d}| dt = 1, xt] = E{ H(xt+1) +

5See Blevins (2014) for a related proof in the particular case where each agent has two choices: one is discrete
and one is continuous.

6The error term, %t = (%0
t , %1

t ), has support on R2 and finite expectation E [%d
t ] < • for d ' { 0, 1} .
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) 1(xt+1)|dt = 1, xt} by using the derivation in the first step. Then proceed as follows:

||G) " G)̂ || = sup
xt ' X

���$E{ H(xt+1) + ) 1(xt+1)|dt = 1, xt} " $E{ H(xt+1) + )̂ 1(xt+1)|dt = 1, xt}
���

= sup
xt ' X

$
���E{ H(xt+1) + ) 1(xt+1) " H(xt+1) " )̂ 1(xt+1)|dt = 1, xt}

���

$ $ sup
xt+1 ' X

���) 1(xt+1) " )̂ 1(xt+1)
���

= $||) " )̂ ||

(H.3)

Therefore G is a contraction mapping with modulus $. The second line moves the arguments from the
second expectation to the first. The third line removes the equal terms (H(xt+1)) and the conditional
expectation ($ follows from this). The fourth line is from the definition of the supremum norm. !
Therefore, v1(xt) is identified.

Step 3: In the previous steps we identified nonparametrically Dv(xt) = v0(xt) " v1(xt) (directly from
the data), and v1(xt) (by the Contraction Mapping Theorem). Therefore, v0(xt) = Dv(xt) + v1(xt) and
because v0(xt) consists only of the flow utility (it corresponds to the terminating action), then u0(xt) =
Dv(xt) + v1(xt). !
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I Additional Estimation Results

Although there exists an infinite number of parametrization of the regret averse utility function, this sec-
tion reports estimates for 7 different models. All estimations are consistents with the findings displayed in
Section 7. The table show NLS estimates assuming the following discount rates: $ ' { .99, .97, .95, .93, .91, .89}
(models 6 and 7 report estimates only for $ = 0.99). In all models the objective function is equation 5.7,
while the utility function is:

u(yt, sp,t, s f ,t) = U(yt; #) " R(sp,t, s f ,t; #) (I.1)

where U(yt; #) is CRRA with risk aversion parameter # )= 07, and R(á, á; #) is the regret function. While
U(á; #) is constant across the eight models, the regret function is not. The list below exposes the regret
function employed for each model (numbered from 1 to 7):

1. R = ) 1U(sp,t; #) + 1{ Info After } ! 2U(s f ,t; #)

2. R = ) 1U(sp,t; #) + 1{ Info After }
�
! 2U(s f ,t; #) + * 2U(sp,t & s f ,t; #)

�

3. R = 1{ No Info } ) 1U(sp,t; #) + 1{ Info After } ) 2(U(sp,t; #) + ! 2U(s f ,t; #))

4. R = 1{ No Info } ) 1U(sp,t; #) + 1{ Info After }
�
) 2U(sp,t; #) + ! 2U(s f ,t; #) + * 2U(sp,t & s f ,t; #)

�

5. R = 1{ No Info } ) 1U(sp,t; #) + 1{ Info After }
�
) 2U(sp,t; #) + ! 2U(s f ,t; #) + * 2U(sp,t; #) & U(s f ,t; #)

�

6. R = ) U(sp,t; #) + ! U(s f ,t; #) + * sp,t & s f ,t

7. R = 1{ No Info } ) 1U(sp,t; #) + 1{ Info After } () 2U(sp,t; #) + ! 2U(s f ,t; #) + * 2sp,t & s f ,t)

The main specification is Model 5, because in this version the interaction term captures the cross-
partial of the regret function across the past and future peaks, while controlling for risk attitudes.

The tables also differ based on the definition of the past peak (Sp,t). In Tables 7, 8 and 9, agents are
assumed to focus on the past peak as the running max from period 1. In tables 10 and 11 the past peak
is assumed to be the running max from period 6. Finally Tables 12 and 13 refers to the case where the
past max starts at period 10. Overall, the results are very constant across all tables, and corroborate our
conclusions outlined in Section 8.

The dataset is discretized over 200 points in the interval [0.5, 9.3] according to the procedure exposed
in Section F. The distance between adjacent points is e 0.049. Section J in the Appendix estimates models
1 to 5 over a support consisting of 300 points.

7CRRA implies that U(xt) =
x(1" #)

t " 1
1" # . When # < 0 the agent is risk seeking. He is risk averse otherwise.
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Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 1

#̂ " 0.249!!! " 0.251!!! " 0.250!!! " 0.250!!! " 0.249!!! " 0.248!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.423!!! 1.098!!! 1.045!!! 1.027!!! 1.019!!! 1.014!!!

(0.118) (0.042) (0.026) (0.019) (0.014) (0.012)
!̂ 2 0.182!!! 0.166!!! 0.138!!! 0.118!!! 0.103!!! 0.092!!!

(0.056) (0.038) (0.028) (0.027) (0.018) (0.015)
Model 2

#̂ " 0.253!!! " 0.253!!! " 0.254!!! " 0.253!!! " 0.253!!! " 0.253!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.004)
)̂ 1 1.520!!! 1.124!!! 1.063!!! 1.041!!! 1.031!!! 1.026!!!

(0.119) (0.043) (0.026) (0.019) (0.014) (0.012)
!̂ 2 1.701!!! 1.231!!! 1.122!!! 1.095!!! 1.091!!! 1.094!!!

(0.373) (0.256) (0.189) (0.148) (0.121) (0.103)
*̂ 2 " 0.124!!! " 0.081!!! " 0.074!!! " 0.073!!! " 0.074!!! " 0.074!!!

(0.028) (0.019) (0.014) (0.011) (0.009) (0.008)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 7: Estimation results when Sp,t is the running maximum price from period 1 onwards.
Models 1 and 2. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 3

#̂ " 0.246!!! " 0.247!!! " 0.248!!! " 0.249!!! " 0.251!!! " 0.251!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.155!!! 1.049!!! 1.032!!! 1.025!!! 1.021!!! 1.021!!!

(0.147) (0.047) (0.028) (0.019) (0.015) (0.015)
)̂ 2 1.951!!! 1.357!!! 1.192!!! 1.066!!! 0.939!!! 0.939!!!

(0.208) (0.115) (0.099) (0.009) (0.085) (0.084)
!̂ 2 0.042 0.008 0.028 0.086 0.171! 0.171!!!

(0.072) (0.076) (0.078) (0.077) (0.073) (0.073)
Model 4

#̂ " 0.249!!! " 0.248!!! " 0.246!!! " 0.244!!! " 0.242!!! " 0.239!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.180!!! 1.051!!! 1.032!!! 1.024!!! 1.021!!! 1.019!!!

(0.146) (0.047) (0.028) (0.019) (0.015) (0.012)
)̂ 2 2.251!!! 1.562!!! 1.494!!! 1.529!!! 1.611!!! 1.724!!!

(0.216) (0.123) (0.112) (0.111) (0.114) (0.012)
!̂ 2 1.948!!! 1.293!!! 1.167!!! 1.139!!! 1.142!!! 1.159!!!

(0.038) (0.260) (0.192) (0.151) (0.125) (0.106)
*̂ 2 " 0.152!!! " 0.106!!! " 0.102!!! " 0.107!!! " 0.116!!! " 0.128!!!

(0.029) (0.021) (0.015) (0.014) (0.012) (0.012)
Model 5

#̂ " 0.249!!! " 0.248!!! " 0.246!!! " 0.244!!! " 0.242!!! " 0.239!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.180!!! 1.051!!! 1.032!!! 1.024!!! 1.021!!! 1.019!!!

(0.146) (0.047) (0.028) (0.019) (0.015) (0.012)
)̂ 2 2.099!!! 1.455!!! 1.391!!! 1.421!!! 1.495!!! 1.596!!!

(0.209) (0.117) (0.105) (0.103) (0.111) (0.108)
!̂ 1.796!!! 1.187!!! 1.065!!! 1.031!!! 1.026!!! 1.031!!!

(0.035) (0.240) (0.178) (0.140) (0.115) (0.097)
*̂ " 0.190!!! " 0.133!!! " 0.128!!! " 0.134!!! " 0.144!!! " 0.158!!!

(0.037) (0.026) (0.002) (0.017) (0.016) (0.015)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 8: Estimation results when Sp,t is the running maximum price from period 1 onwards.
Models 3, 4 and 5. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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Parameter Model 6 Model 7

#̂ " 0.249!!! " 0.247!!!

(0.005) ( 0.006)
)̂ 1 1.416!!! 1.163!!!

(0.126) ( 0.147)
)̂ 2 - 2.136!!!

- (0.247)
!̂ 0.115 0.669

(0.438) (0.468)
*̂ " 0.013 " 0.129

(0.085) (0.095)

N 97,285 97,285

Table 9: Estimation results when Sp,t is the running maximum price from period 1 onwards.
Models 6 and 7. Periods: 16 to 49. Discount factor $ = 0.99. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.

Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 1
#̂ " 0.234!!! " 0.237!!! " 0.237!!! " 0.236!!! " 0.235!!! " 0.234!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.588!!! 1.181!!! 1.111!!! 1.086!!! 1.075!!! 1.068!!!

(0.126) (0.045) (0.028) (0.020) (0.015) (0.012)
!̂ 2 0.131! 0.145!!! 0.132!!! 0.117!!! 0.107!!! 0.099!!!

(0.056) (0.038) (0.028) (0.022) (0.018) (0.015)
Model 2

#̂ " 0.239!!! " 0.242!!! " 0.242!!! " 0.241!!! " 0.241!!! " 0.240!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.694!!! 1.217!!! 1.139!!! 1.111!!! 1.097!!! 1.088!!!

(0.127) (0.045) (0.028) (0.020) (0.015) (0.013)
!̂ 2 1.317!!! 1.255!!! 1.272!!! 1.273!!! 1.269!!! 1.263!!!

(0.289) (0.204) (0.154) (0.123) (0.101) (0.086)
*̂ 2 " 0.099!!! " 0.091!!! " 0.093!!! " 0.093!!! " 0.093!!! " 0.094!!!

(0.024) (0.016) (0.012) (0.010) (0.008) (0.007)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 10: Estimation results when Sp,t is the running maximum price from period 6 onwards.
Models 1 and 2. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 3
#̂ " 0.231!!! " 0.234!!! " 0.327!!! " 0.240!!! " 0.244!!! " 0.246!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.365!!! 1.146!!! 1.111!!! 1.097!!! 1.088!!! 1.081!!!

(0.158) (0.005) (0.029) (0.020) (0.015) (0.012)
)̂ 2 2.010!!! 1.361!!! 1.109!!! 0.902!!! 0.717!!! 0.564!!!

(0.220) (0.121) (0.102) (0.091) (0.082) (0.074)
!̂ 2 0.029 0.042 0.133 0.260!!! 0.395!!! 0.517!!!

(0.071) (0.075) (0.075) (0.072) (0.067) (0.062)
Model 4

#̂ " 0.235!!! " 0.236!!! " 0.235!!! " 0.234!!! " 0.231!!! " 0.228!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.390!!! 1.150!!! 1.110!!! 1.094!!! 1.086!!! 1.083!!!

(0.157) (0.050) (0.029) (0.020) (0.016) (0.013)
)̂ 2 2.324!!! 1.605!!! 1.519!!! 1.535!!! 1.597!!! 1.690!!!

(0.229) (0.128) (0.116) (0.115) (0.117) (0.121)
!̂ 2 1.399!!! 1.249!!! 1.272!!! 1.284!!! 1.292!!! 1.303!!!

(0.293) (0.207) (0.157) (0.125) (0.103) (0.088)
*̂ 2 " 0.119!!! " 0.109!!! " 0.115!!! " 0.122!!! " 0.130!!! " 0.140!!!

(0.025) (0.018) (0.014) (0.013) (0.012) (0.012)
Model 5

#̂ " 0.235!!! " 0.236!!! " 0.235!!! " 0.234!!! " 0.231!!! " 0.228!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.390!!! 1.150!!! 1.110!!! 1.094!!! 1.086!!! 1.083!!!

(0.157) (0.050) (0.029) (0.020) (0.016) (0.013)
)̂ 2 2.205!!! 1.496!!! 1.404!!! 1.413!!! 1.467!!! 1.551!!!

(0.222) (0.123) (0.109) (0.107) (0.109) (0.112)
!̂ 2 1.280!!! 1.139!!! 1.156!!! 1.162!!! 1.162!!! 1.163!!!

(0.269) (0.191) (0.144) (0.115) (0.095) (0.081)
*̂ 2 " 0.147!!! " 0.135!!! " 0.142!!! " 0.150!!! " 0.160!!! " 0.171!!!

(0.031) (0.022) (0.018) (0.016) (0.015) (0.014)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 11: Estimation results when Sp,t is the running maximum price from period 6 onwards.
Models 3, 4 and 5. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 1
#̂ " 0.249!!! " 0.256!!! " 0.257!!! " 0.256!!! " 0.254!!! " 0.252!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.004)
)̂ 1 1.403!!! 1.260!!! 1.173!!! 1.135!!! 1.114!!! 1.101!!!

(0.117) (0.046) (0.028) (0.020) (0.016) (0.013)
!̂ 2 0.194!!! 0.153!!! 0.137!!! 0.124!!! 0.115!!! 0.109!!!

(0.053) (0.037) (0.027) (0.021) (0.017) (0.014)
Model 2

#̂ " 0.257!!! " 0.262!!! " 0.262!!! " 0.261!!! " 0.260!!! " 0.258!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.865!!! 1.373!!! 1.246!!! 1.192!!! 1.163!!! 1.146!!!

(0.125) (0.047) (0.029) (0.021) (0.016) (0.013)
!̂ 2 1.954!!! 1.580!!! 1.463!!! 1.394!!! 1.348!!! 1.313!!!

(0.177) (0.129) (0.102) (0.083) (0.070) (0.061)
*̂ 2 " 0.151!!! " 0.120!!! " 0.111!!! " 0.105!!! " 0.101!!! " 0.099!!!

(0.015) (0.011) (0.008) (0.007) (0.006) (0.005)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 12: Estimation results when Sp,t is the running maximum price from period 10 onwards.
Models 1 and 2. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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Parameter $ = .99 $ = .97 $ = .95 $ = .93 $ = .91 $ = .89

Model 3
#̂ " 0.252!!! " 0.261!!! " 0.266!!! " 0.269!!! " 0.272!!! " 0.273!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.686!!! 1.332!!! 1.229!!! 1.182!!! 1.155!!! 1.137!!!

(0.151) (0.052) (0.030) (0.021) (0.016) (0.013)
)̂ 2 1.957!!! 0.951!!! 0.710!!! 0.510!!! 0.361!!! 0.259!!!

(0.190) (0.111) (0.090) (0.007) (0.067) (0.059)
!̂ 2 0.288!!! 0.318!!! 0.442!!! 0.580!!! 0.692!!! 0.773!!!

(0.061) (0.065) (0.063) (0.058) (0.053) (0.047)
Model 4

#̂ " 0.256!!! " 0.259!!! " 0.257!!! " 0.254!!! " 0.251!!! " 0.246!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.698!!! 1.328!!! 1.221!!! 1.177!!! 1.153!!! 1.139!!!

(0.150) (0.052) (0.030) (0.021) (0.016) (0.013)
)̂ 2 2.254!!! 1.625!!! 1.547!!! 1.574!!! 1.652!!! 1.764!!!

(0.231) (0.128) (0.116) (0.115) (0.117) (0.121)
!̂ 2 2.072!!! 1.590!!! 1.470!!! 1.407!!! 1.372!!! 1.353!!!

(0.186) (0.30) (0.103) (0.085) (0.072) (0.063)
*̂ 2 " 0.168!!! " 0.133!!! " 0.128!!! " 0.130!!! " 0.136!!! " 0.145!!!

(0.017) (0.012) (0.011) (0.010) (0.010) (0.011)
Model 5

#̂ " 0.256!!! " 0.259!!! " 0.257!!! " 0.254!!! " 0.251!!! " 0.246!!!

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
)̂ 1 1.698!!! 1.328!!! 1.221!!! 1.118!!! 1.153!!! 1.139!!!

(0.150) (0.052) (0.030) (0.021) (0.016) (0.013)
)̂ 2 2.086!!! 1.492!!! 1.418!!! 1.444!!! 1.516!!! 1.619!!!

(0.221) (0.123) (0.109) (0.107) (0.109) (0.112)
!̂ 2 1.903!!! 1.457!!! 1.341!!! 1.277!!! 1.236!!! 1.209!!!

(0.171) (0.120) (0.095) (0.078) (0.066) (0.057)
*̂ 2 " 0.211!!! " 0.167!!! " 0.161!!! " 0.163!!! " 0.170!!! " 0.180!!!

(0.021) (0.015) (0.013) (0.013) (0.013) (0.013)

N 97,285 97,285 97,285 97,285 97,285 97,285

Table 13: Estimation results when Sp,t is the running maximum price from period 10 onwards.
Models 3, 4 and 5. Periods: 16 to 49. Standard errors are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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J Estimation with a Different Support

The discretization does not affect the interpretation of the estimated coefficients. Table 14 shows the esti-
mations for Model 1 - 5 when $ = 0.99, and the support is defined following the procedure in Appendix F,
but assuming 300 points instead of 200 (Tauchen, 1986). Overall, the results stay very close to the previous
estimates.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

#̂ " 0.243!!! " 0.252!!! " 0.234!!! " 0.252!!! " 0.252!!!

(0.007) (0.007) (0.007) (0.007) (0.007)
)̂ 1 1.053!!! 1.300!!! 1.213!!! 1.267!!! 1.268!!!

(0.154) (0.154) (0.191) (0.188) (0.189)
)̂ 2 - - 0.703!! 1.371!!! 1.045!!!

- - (0.270) (0.279) (0.270)
!̂ " 0.151! 4.019!!! " 0.060 4.036!!! 3.710!!!

(0.074) (0.474) (0.095) (0.478) (0.441)
*̂ - " 0.322!!! - " 0.325!!! " 0.407!!!

- (0.037) - (0.016) (0.047)

N 97,285 97,285 97,285 97,285 97,285

Table 14: Estimation results when Sp,t is the running maximum price from period 1 onwards.
The state space includes 300 points. Models 1, 2, 3, 4 and 5. Periods: 16 to 49. Standard errors
are in parenthesis.
!!! ,!! ,! denote statistical significance at the 0.1, 1 and 5 percent level.
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K Instructions (English)

K.1 Market Task

K.1.1 General Instructions

Dear Participants,
You are participating in a decision making experiment which consists of a main part and a questionnaire.
If you follow the instructions carefully, you can earn a considerable amount of money depending on your
decisions and random events. Your earnings will be paid to you at the end of the experiment.

During the experiment you are not allowed to communicate with anybody. In case of questions,
please raise your hand. Then we will come to your seat and answer your questions. Any violation of this
rule excludes you immediately from the experiment and all payments.

Remember that the payments after the experiment will be made VIA BANK TRANSFER , which
implies that YOU MUST HAVE AN IBAN TO YOUR BANK ACCOUNT . You should receive your
payment in 2-3 weeks. Unfortunately we are unable to pay you in cash, so if you do not have a bank
account, please let us know and we will have to exclude you from the participation.

K.1.2 The Task

In this experiment you will make decisions in 48 different tasks. Each task is separate and does not depend
on the previous tasks in any way. At the beginning of each task you receive 10 Euro. You can earn or lose
money depending on your choices. This money will be added or subtracted from 10 Euro.

26



K.1.3 Structure of the Task

Imagine that you are participating in a financial market and that you should decide at each market (trial)
when to sell an object. At the beginning of each market (trial) you observe the price of an object for 15
periods. During these periods you can see how the price of the object evolves before you enter the market
which means that you cannot make any decisions during these 15 periods. The picture on the right shows
the example of the price of the object varying during this starting phase. When you see a vertical red line
drawn across the graph, this means that the starting phase of price observation is over. The current price
of the object at this point corresponds to the price at which you enter the market. On the top of the screen
you can see the surrecnt price displayed in each period (between 0 and 10 Euro).
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K.1.4 Entering the Market

After you have observed the evolution of the value for 15 periods the market stops at the red vertical line
and the button ENTRATA (ENTER) appears at the bottom of the screen (see top figure). When you press
the button you enter the market. This means that you “buy” the object at the current value and spend 2.59
as indicated at the top of the screen. You do not have a choice at which price to buy the object. Once you
press the button three things happen: 1) the Valore di entrata (Entry price) appears on top of the screen in
red (see bottom figure); 2) the value starts to change again and 3) the button changes to USCITA (EXIT).

K.1.5 Exiting the Market

The choice you make in the market is when to exit. This is the point at which you “sell” the object and
obtain the amount of money equal to the current value. Your profit in the market is the amount you
received at the exit minus the amount you paid when you entered. For example, if you entered at the
value of e 2.59 and exited at the value of e 2.68 your profit is 2.68 2.59 = 0.09, or 9 cents. If you entered
at the value of e 2.59 and exited at the value of e 2.45 your profit is 2.45 2.59 = -0.14, or minus 14 cents.
Thus, YOUR PROFIT CAN BE NEGATIVE . If you do not choose to exit before the closure of the market
at period 50, your profit will be calculated using the last period value of the object.
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K.1.6 Observed and Unobserved Future

There are two possible scenarios, which can happen after you press the USCITA (EXIT) button, or sell
the object. In one scenario you will observe the evolution of the value of the object until the market
closure (after period 50). In the other case you will not observe the evolution of the value. You will be
informed about which scenario you are in BEFORE the opening of each market. Before each market you
will observe a screen with two possible phrases: “INFO DOPO luscita” (Information after exit) or “NO
INFO aluscita” (No information after exit) (see figures). The former indicates that the market which you
will choose in next is the one with observable future value and the latter the market with non-observable
future value. To make sure that you remember which scenario you are in, the “INFO DOPO” and “NO
INFO signs will appear in the top left corner of the screen while the market is evolving.
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K.1.7 After Exiting the Market

After you exit the market, or press USCITA (EXIT) button, you will be provided with the information on
your profit. Top figure illustrates the scenario with observable future and the bottom figure with non-
observable future. In both cases, you will see the ÒValore di uscitaÓ(exit value) in blue and profit in green
(if positive) or red (if negative). In case of non-observable future you will be also asked to wait until the
market closure which is the same time it would have taken the market to reach closure if you could have
observed the future value. When the market closes you can press PROSEGUI (CONTINUE) button to
proceed to the next market.

K.1.8 Payment

You payment in the experiment is determined as follows. Before the experiment you are given an endow-
ment of e 10. After you finish choosing in all 50 markets, one of them will be chosen at random and the
profit that you made in that market will be added to your endowment. So, if you earned e 3 in the chosen
market, your total payment will be e 10 + e 3 = e 13. If your profit was -e 3, your total payment will be
e 10 - e 3 = e 7. Notice that your profit can change between -e 10 and e 10. Thus you can earn minimum
of e 0 and maximum of e 20.
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L Instructions (Italian)

L.1 Market Task

L.1.1 Informazioni Generali

Gentile partecipante,
Prenderai parte ad un esperimento comprendente due compiti decisionali e un questionario. Se segui
le istruzioni attentamente potrai guadagnare una considerevole somma di denaro, che dipenderà dalle
decisioni che prenderai durante l’esperimento. La somma da te guadagnata ti verrà pagata al termine
dell’esperimento.

Ti chiediamo per favore di non comunicare con gli altri partecipanti durante lÕesperimento. Nel
caso tu abbia delle domande, chiedi allo sperimentatore alzando la mano. A quel punto lo sperimentatore
verrà alla tua postazione e risponderà alle tue domande.

Il pagamento al termine dell’esperimento avverrà tramite ACCREDITO SU CONTO CORRENTE
BANCARIO , perci è importante tu sia perlomeno cointestatario di un conto ed abbia con te LÕIBAN DEL
TUO CONTO CORRENTE (il conto corrente di uno dei genitori non è sufÞciente, devi essere cointes-
tatario del conto). Riceverai il pagamento entro 4-5 settimane. Siccome non possiamo pagare in contanti,
fateci sapere all’inizio dell’esperimento se non avete un conto corrente, e verrete esclusi dall’esperimento.

L.1.2 Compito di Scelta

In questo compito ti verrà chiesto di prendere una decisione in 48 diversi problemi. Ogni problema è a
se stante e non dipende dall’esito ottenuto nei problemi precedenti. All’inizio del compito riceverai una
somma di partenza pari a 10 euro. In ogni problema potrai guadagnare o perdere un certo ammontare di
denaro, il quale verrà sommato o sottratto a questi 10 euro.
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L.1.3 Struttura di Campito di Scelta

Immagina di essere all’interno di un mercato finanziario e di dover decidere, ad ogni trial, quando in-
cassare l’ammontare investito. Ogni mercato (trial) inizia osservando il valore dell’oggetto del tuo in-
vestimento per 15 periodi. Durante questa prima fase, vedrai come il valore dell’oggetto si è evoluto
nei precedenti 15 periodi del mercato. Durante questi 15 periodi non potrai prendere nessuna decisione.
La figura a destra ti mostra un esempio di come il valore dell’oggetto pu variare durante questa prima
fase. Quando la linea verticale rossa verrà raggiunta, significa che i 15 periodi della fase di osservazione
saranno terminati. A quel punto il valore corrente dell’oggetto corrisponderà al tuo valore d’entrata nel
mercato. La dicitura ÒValore correnteÓin alto ti mostra il valore dell’oggetto in ogni periodo (tra e 0 e
e 10).
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L.1.4 Entrare nel Mercato

Dopo aver osservato 15 periodi il mercato si fermerà alla linea verticale rossa e il pulsante ÒENTRATAÓ
apparirà in basso (vedi la figura in alto a destra). A questo punto per entrare nel mercato dovrai pre-
mere il tasto ÒENTRATA.Ó Questo significa che effettivamente tu compri l’oggetto al valore corrente.
Nell’esempio indicato nella figura in alto spenderesti e 2.59. Non ti sarà possibile evitare di entrare nel
mercato e non potrai scegliere tu stesso a quale prezzo comprare l’oggetto. Una volta premuto il pulsante
ÒENTRATAÓ il valore dell’oggetto comincerà a variare nuovamente e ti compariranno tre nuove infor-
mazioni a schermo (figura in basso a destra): 1) il ÒValore di entrataÓin rosso in alto a sinistra; 2) il valore
attuale dell’oggetto; 3) il pulsante ÒUSCITA.Ó

L.1.5 Uscire dal Mercato (Uscita)

L’unica scelta a tua disposizione in ogni mercato sarà quando uscire. Questa scelta corrisponde al mo-
mento in cui decidi di vendere l’oggetto e intascare la somma di denaro pari al “Valore corrente.” Il tuo
guadagno nel mercato sarà la differenza tra il “Valore corrente” al momento di vendita dell’oggetto e il
“Valore di entrata.” Ad esempio, se tu entri quando l’oggetto vale e 2.59 ed esci al valore di e 2.68 il tuo
guadagno sarà pari a e 2.68 - e 2.59 = e 0.09, o 9 centesimi. Se invece entri al “Valore di entrata” pari
a e 2.59 ed esci quando il “Valore corrente” è e 2.45, il tuo guadagno sarà di e 2.45 - e 2.59 = e -0.14, o
un guadagno negativo di 14 centesimi. Perci, IL TUO GUADAGNO NEL MERCATO PUOÕ ESSERE
NEGATIVO. Se non esci prima della fine del mercato, che dura 50 periodi, il tuo guadagno sarà calcolato
usando il valore corrente nell’ultimo periodo.
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L.1.6 Futuro Osservato o non Osservato

Ci sono due possibili scenari alternativi che si possono realizzare dopo che hai cliccato sul pulsante “US-
CITA,” ovvero venduto l’oggetto. In uno scenario ti verrà mostrata l’evoluzione del valore dell’oggetto
fino alla chiusura del mercato (50esimo periodo). Nell’altro caso, dopo la vendita dell’oggetto non os-
serverai nulla, e un nuovo mercato inizierà. Sarai informato riguardo allo scenario in cui cui ti trovi
PRIMA dell’inizio di ogni mercato. Prima di ogni mercato, osserverai una schermata con due possibili
frasi: ÒINFO DOPO lÕuscitaÓ o ÒNO INFO allÕuscitaÓ(vedi le figure a destra). La prima dicitura indica
che ti trovi in un mercato in cui l’evoluzione del valore dopo la vendita è osservabile, mentre la seconda
dicitura ti informa che il futuro valore dell’oggetto non è osservabile. Per ricordarti in quale scenario
ti trovi, le diciture Info After ed No Info sono mostrate in alto a sinistra della schermata in cui vedi
l’evoluzione del mercato.
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L.1.7 Dopo Essere Usciti dal Mercato

Dopo la tua uscita dal mercato, o dopo aver premuto il pulsante “USCITA,” riceverai informazioni sul
tuo guadagno. La figura in alto a destra ti mostra lo scenario “INFO DOPO,” dove il futuro è osservabile,
mentre la figura in basso ti mostra lo scenario “NO INFO,” dove il futuro non è osservabile. In entrambi
i casi, in alto a destra visualizzerai il ÒValore di uscitaÓin blu, ed il tuo ÒGuadagnoÓin verde se positivo
e in rosso se negativo. Inoltre, nello scenario Info After dovrai attendere il termine del mercato, che
corrisponde al tempo che il mercato avrebbe impiegato per raggiungere la sua naturale conclusione (50
periodi) se tu non avessi venduto l’oggetto prima. Raggiunto l’ultimo periodo potrai esaminare la tua
prova; per accedere al prossimo mercato dovrai cliccare sul pulsante ÒProsegui.Ó

L.1.8 Pagamento

Il tuo guadagno nell’esperimento viene calcolato come segue. Prima dell’esperimento ti vengono dati
e 10 a disposizione. Quando hai finito di scegliere in tutti i 48 mercati, uno di questi verrà scelta in modo
casuale e il guadagno che tu fai in quel mercato sarà sommato ai e 10 di partenza. Perciò, se tu guadagni
e 3 nel mercato scelto, il tuo pagamento totale sarà e 10 + e 3 = e 13. Nel caso di un guadagno negativo,
ad esempio -e 3, il tuo pagamento totale sarà e 10 - e 3 = e 7. Nota che il tuo guadagno può variare tra
-e 10 e +e 10, perciò il tuo pagamento totale varia tra un minimo di e 0 e un massimo di e 20.
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L.2 Holt and Laury Task (Italian)

DESCRIZIONE DELLA SECONDA PARTE DELLÕESPERIMENTO
In questa parte dell’esperimento ti verranno presentate 10 coppie di lotterie. Ogni lotteria ti garantisce

di ottenere, con una certa probabilità, una tra due possibili vincite. Per ogni coppia di lotterie, il tuo com-
pito sarà quello di scegliere la lotteria che preferisci giocare. Di seguito ti verrà presenata una descrizione
dettagliata del compito. Premere il pulsante OK per continuare.

DESCRIZIONE DEL COMPITO
Nella parte destra dello schermo sono riportate le 10 coppie di lotterie. Ci sono 10 righe che corrispon-

dono alle 10 scelte che dovrai effettuare. Ogni riga rappresenta una scelta tra due lotterie.
Per effettuare le tue scelte sarà sufficiente cliccare in corrispondenza della lotteria che preferisci. Una

volta che avrai scelto una lotteria, essa diventerà di colore rosso.
Dopo che avrai effettuato le tue 10 scelte, il computer selezionerà in modo casuale una delle 10 righe.

Infine, la lotteria da te scelta verrà giocata dal computer e tu riceverai la vincita corrispondente all’esito
della lotteria. La tua vincita ti verrà mostrata a schermo dopo che avrai completato e validato tutte le tue
scelte.

Ricorda, l’ammontare di denaro rappresentato nelle diverse lotterie è reale, perciò sarai pagato/a in
base alle scelte che effettuerai e secondo le regole appena descritte.

Se hai qualche dubbio sulla procedura ed il metodo di pagamento sentiti libero/a di chiedere chiari-
menti allo sperimentatore.
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L.3 CRT Tasks (Italian)

1. Se stai partecipando ad una gara e sorpassi la persona in seconda posizione, in quale posizione ti
trovi?

2. Un contadino possiede 15 pecore e tutte tranne 8 muoiono. Quante pecore sono rimaste?

3. Il padre di Anna ha in totale cinque figlie: Lala, Lele, Lili, Lolo e ...? Qual è il nome della quinta
figlia?

4. Quanti metri cubi di terra ci sono in un buco che è profondo 3 metri, lungo 3 metri e largo 3 metri?

5. Giovanni beve 10 litri d’acqua in 6 giorni e Maria beve 10 litri d’acqua in 12 giorni, dopo quanti
giorni avranno bevuto assieme 10 litri d’acqua?

6. Mario ha ricevuto un voto che è sia il 15- più alto della classe, sia il 15- più basso della classe.
Quanti studenti ci sono nella classe?

7. Davide compra un acquario per e 60, lo rivende per e 70, lo ricompra per e 80 e infine lo rivende
per e 90. Quanto ha guadagnato?

8. Simone investe e 8.000 in azioni nei primi giorni di gennaio del 2008. Sei mesi dopo, il 17 luglio, le
azioni che ha comprato perdono il 50% del loro valore. Poi, tra il 17 luglio e il 17 ottobre, le azioni
aumentano il loro valore del 75%. A questo punto Simone:

a) ha la stessa cifra che aveva all’inizio

b) ha più di quanto aveva all’inizio

c) ha meno di quanto aveva all’inizio

9. Un cioccolatino e una caramella costano e 1,10 in totale. Il cioccolatino costa e 1 in più della
caramella. Quanto costa la caramella? (centesimi)

10. Se 5 macchinari in 5 minuti producono 5 portachiavi, quanto tempo ci mettono 100 macchinari a
produrre 100 portachiavi? (minuti)

11. In un lago c’è una distesa di ninfee. Ogni giorno la distesa raddoppia di dimensione. Se in 48 giorni
la distesa copre lintero lago, quanti giorni ci ogliono per coprirne la metà? (giorni)

12. Se 3 commessi possono incartare 3 giocattoli in 1 ora, quanti commessi sono necessari per incartare
6 giocattoli in 2 ore? (commessi)

13. Il voto di Marco è sia il 15- voto più alto che il 15- voto più basso della classe. Quanti studenti ci
sono nella sua classe? (studenti)

14. In una squadra di atletica gli atleti alti tendono a vincere 3 volte di più di quelli bassi. Quest’anno
la squadra ha vinto 60 medaglie. Quante medaglie sono state vinte dagli atleti bassi? (medaglie)
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