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Abstract

The rational-voter model is often criticized on the grounds that two of its central

predictions (the paradox of voting and Duverger�s Law) are at odds with reality. Re-

cent theoretical advances suggest that these empirically unsound predictions might be

an artifact of an (arguably unrealistic) assumption: the absence of aggregate uncer-

tainty about the distribution of preferences in the electorate. In this paper, we propose

direct empirical evidence of the e¤ect of aggregate uncertainty in multicandidate elec-

tions. Adopting a theory-based experimental approach, we explore whether aggregate

uncertainty indeed favors the emergence of non-Duverger�s law equilibria in plurality

elections. Our experimental results support the main theoretical predictions: sincere

voting is a predominant strategy under aggregate uncertainty, whereas without aggre-

gate uncertainty, voters massively coordinate their votes behind one candidate, who

wins almost surely.
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1 Introduction

Saying that the rational-voter model is not consensual may be an understatement. Voter

rationality has been at the center of a heated debate for decades.1 Its detractors attack

this modelling approach on the grounds that some central predictions of the rational voter

model are, as summarized by Ledyard (1984, pp7-8), �obviously contradicted by the facts�.

First, rational-voter models of costly voting highlight the paradox of voting : in a large

election, �If each person only votes for the purpose of in�uencing the election outcome,

then even a small cost to vote (...) should dissuade anyone from voting. Yet, it seems

that many people will put up with long lines, daunting registration requirements and even

the threat of physical violence or arrest in order to vote� (Feddersen 2004, p99). Second,

rational-voter models of multicandidate elections predict a strong version of Duverger�s

Law : in large plurality elections, all votes should go to the top-two contenders.2 Instead,

Fisher and Myatt (2014, p2) argue that �Duverger�s Law (...) sits uncomfortably with the

fact that plurality-rule systems generally exhibit multi-candidate support�.3 From these

discrepancies, it is tempting to conclude that the rational voter model should be discarded

altogether (e.g. Green and Shapiro 1994, Caplan 2007).

However, recent theoretical advances suggest that the empirically unsound predictions

of the rational-voter model could be an artifact of a simplifying assumption. It is typically

assumed that there is no aggregate uncertainty about the distribution of preferences in the

electorate. Then, by the law of large numbers, the vote shares of each candidate become

known as electorate size grows. As soon as we relax that (unrealistic) assumption, the

predictions of the rational-voter model are much more in line with reality. First, this

augmented model predicts turnout levels orders of magnitude higher than without aggregate

uncertainty (Good and Mayer 1975, Castanheira 2003a, Myatt 2012). Second, stable non-

Duverger�s Law equilibria (in which three candidates receive a positive fraction of the votes)

can be proved to exist in many situations (Myatt 2007, Dewan and Myatt 2007, Bouton

and Castanheira 2012, Bouton et al. 2014).

1See e.g. Ledyard (1984), Green and Shapiro (1994), Dhillon and Peralta (2002), Feddersen (2004),
Degan and Merlo (2009), Kawai and Watanabe (2013), and Ashworth and Bueno de Mesquita (2014).

2See, among others, Riker (1982), Palfrey (1989), Myerson and Weber (1993), Cox (1997) and Fey
(1997). This literature underlines that, even though they exist, non-Duverger�s Law equilibria are typically
�expectationally unstable�(Fey 1997), and therefore irrelevant, in that setup.

3Recent empirical evidence based on observational data underlines that �Duvergerian forces�do operate
in plurality, and lead some (but not all) voters to abandon their most-preferred candidate (Fujiwara 2011,
Kawai and Watanabe 2013, Spenkuch 2013, 2014). For evidence based on survey data, see e.g. Blais et al.
(2001).

1



From a theoretical standpoint, aggregate uncertainty alone is thus su¢ cient to bring

the rational voter model much more in line with facts. Yet, competing theories can claim

similar achievements (see e.g. Feddersen and Sandroni 2006a,b, Bendor et al. 2011). It is

thus fundamental to test empirically whether aggregate uncertainty alone may produce a

change in voting behavior that is qualitatively important. This is the main purpose of this

paper: we propose direct empirical evidence of the e¤ect of aggregate uncertainty on voting

behavior. Our focus is on multicandidate elections under plurality. We adopt a theory-

based experimental approach to explore whether aggregate uncertainty indeed favors the

emergence of non-Duverger�s Law equilibria. And we �nd that its e¤ects are substantial.

Our main theoretical contribution is to propose a simpli�ed model that captures the

e¤ects of aggregate uncertainty in a tractable manner. A �xed number of voters are divided

into two groups: a majority and a minority. The majority has two candidates. Each ma-

jority voter thus faces the choice of either voting for her preferred candidate (aka voting

sincerely) or supporting the other majority candidate (aka voting strategically). Such a di-

vided majority setting is ubiquitous in the literature on strategic voting in multicandidate

elections.4

To understand the theoretical argument, consider �rst a voter who faces no aggregate

uncertainty : she knows the parameters of the distribution of preferences in the population.

Her only uncertainty is about the actual number of voters who support each candidate.

As electorate size grows large, for any voting strategy, she then almost surely knows which

candidate will emerge as �rst, second and third. In this world, her incentive to abandon the

third candidate is immense. This is the psychological e¤ect of Duverger�s Law : �In cases

where there are three parties operating under the simple majority single-ballot system the

electors soon realize that their votes are wasted if they continue to give them to the third

party�(Duverger 1951, p226, cited in Palfrey 1989, p70). Thus, the only stable equilibria

are such that all majority voters coordinate their ballots on a same candidate, while the

other one receives no vote at all.

Now, what happens if voters expect pre-election polls to be imprecise, i.e. if there is

aggregate uncertainty? To capture this, we introduce a second state of nature, in which

the other majority candidate has stronger support in the population. Then, for some voting

strategies, each of the two majority candidates could end up �being third�. Should majority

voters abandon one of them? We show that voters will want to vote for the majority can-

4See, e.g., Palfrey (1989), Myerson and Weber (1993), Cox (1997), Fey (1997), Piketty (2000), Myerson
(2002), Dewan and Myatt (2007), Myatt (2007), Bouton and Castanheira (2012), Bouton (2013), Bouton et
al. (2014).
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didate who wins by the smallest margin in her state (technically, this produces the largest

pivot probability). The intuition is that they thereby insure themselves against the risk of

losing to the minority in the event this candidate turns out to be their best chance to win.

This is the �negative feedback loop�identi�ed by Myatt (2007), which operates against the

�positive feedback loop� operating in Duverger�s Law. Because of the negative feedback

loop, there also exists a stable equilibrium in which all three candidates receive a strictly

positive vote share. Using Duverger�s words, no candidate is a �wasted ballot�.

Testing the aggregate uncertainty hypothesis in real-world elections is extremely chal-

lenging: one would need detailed information on both voter preferences and beliefs (beliefs

about aggregate uncertainty and about the other voters� behavior) that is hard �if not

impossible�to obtain from surveys and/or observational data. This is why we propose to

test this hypothesis through a controlled laboratory experiment.

We consider two treatments. The only di¤erence between them is that there is no aggre-

gate uncertainty in one (subjects learn the expected distribution of preferences) and there

is aggregate uncertainty in the other (subjects do not learn this distribution). Together, the

following two pieces of evidence would validate the empirical relevance of the theoretical

results: without aggregate uncertainty, subjects should correctly anticipate the expected

ranking, and coordinate on the strongest majority candidate. With aggregate uncertainty,

they should massively vote sincerely.

Our experimental results provide strong evidence in favor of this joint prediction: the

amount of sincere voting under aggregate uncertainty, 63%, is substantially higher than

with no aggregate uncertainty, 28%. Conversely, the fraction of votes consistent with the

�Duvergerian�strategy of voting for the strongest candidate independently of one�s prefer-

ence are respectively 32% and 72%. All these di¤erences are statistically signi�cant. These

aggregate data nevertheless hide the issue of equilibrium selection, on which theory is silent.

In line with theory, all groups select a Duverger�s Law equilibrium under no aggregate un-

certainty. Interestingly, they all select the welfare maximizing equilibrium of voting for the

candidate with the strongest expected support. In contrast, equilibrium selection turns

out to be problematic under aggregate uncertainty. First, not all groups coordinated on

the sincere voting equilibrium. Out of 5 groups, only 2 are predominantly �sincere�(93%

and 76% of the identi�ed strategies are sincere in these groups). Second, aggregate uncer-

tainty reduces the subjects�ability to coordinate on a common equilibrium strategy. About

one fourth of the votes cannot be attributed to any strategy, against 5% when there is no

aggregate uncertainty.
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Altogether, we thus observe that aggregate uncertainty does have a �rst order e¤ect on

voting behavior �it reverses the proportions of �sincere�and �strategic�ballots �but also

on Condorcet ine¢ ciency.

1.1 Related Literature

Good and Mayer (1975) identi�ed the impact of aggregate uncertainty on pivot probabil-

ities. Myatt (2007, 2012), Dewan and Myatt (2007) and Mandler (2012) show how this

in�uences voting behavior in the rational-voter model. Using a global games approach, My-

att (2007) obtains that Duverger�s Law equilibria become fragile, whereas non-Duverger�s

Law equilibria become the norm. Fisher and Myatt (2001) propose a laboratory experiment

to test this model, and �nd that voters put too little weight on public signals compared

to the theoretical predictions. Fisher and Myatt (2014) calibrate their model on survey

responses in England and �nd that it can match voting behavior conditional on aggregate

uncertainty being su¢ ciently high.

By comparison, our simpli�ed model has the advantage of �xing the voters�preference

intensity and allowing us to isolate the e¤ect of aggregate uncertainty by varying the relative

probabilities of the two states of nature. We �nd that a non-Duverger�s Law equilibrium

exists for any probability that is di¤erent from 0 or 1. It is thus the presence of aggregate

uncertainty, not its level (strong or weak), or the continuum of types and states of nature,

or the di¤erential e¤ects of the private and public signals that produces the non-Duverger�s

Law equilibrium. Moreover, in our setup, the two types of equilibria coexist, which proves

empirically relevant. Finally, our experiment complements Fisher and Myatt (2001, 2014):

by considering both worlds, with and without aggregate uncertainty, we can clearly isolate

its e¤ects on voting behavior.

Outside this literature, aggregate uncertainty has mainly been used in the framework

of the Condorcet Jury Theorem, in which voters are ex ante uncertain about their own

preference over the candidates (Austen-Smith and Banks 1996, Feddersen and Pesendorfer

1997, Myerson 1998). What motivates three (or more) candidate equilibria in Piketty

(2000), Castanheira (2003b), and Bouton and Castanheira (2009, 2012) may thus be mainly

due to individual and collective learning e¤ects. In our setup instead, voters have private

valued preferences. Information never a¤ects which candidate they prefer, and there are no

future periods that may provide an incentive to learn in order to a¤ect future equilibria.

The experimental literature on multicandidate elections is surprisingly small: see Ri-

etz (2008), Laslier (2010) and Palfrey (2012) for detailed reviews of that literature. The
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seminal paper by Forsythe et al. (1993) is closely related to our paper. They consider three-

candidate elections in which a divided majority is opposed to a uni�ed minority. Voters

are perfectly informed about the distribution of types in the electorate. They �nd that,

in elections without polls or shared history, plurality rule frequently leads to a victory of

the Condorcet loser. However, both polls and shared histories (i) decrease the frequency

of such coordination failure among majority voters, and (ii) favor the emergence of Du-

verger�s Law. Forsythe et al. (1996) analyze alternative voting procedures. In Bouton et

al. (2014), we propose an experimental setup that is close to the present one, but study a

multicandidate Condorcet Jury setup and compare electoral systems. Here, the focus is on

�rst-past-the-post elections, and there is no information aggregation problem.

2 Theoretical Analysis

2.1 The Model

We consider a voting game in which an electorate of �xed and �nite size must select a policy

P out of three possible alternatives, A; B and C. The electorate is split in two groups: n

majority voters, and nC minority voters. Majority voters have in common that they view

C as the worst alternative. Yet, they disagree on which alternative is best: types-tA prefer

A over B whereas types-tB prefer B over A: In particular, we assume the following utilities:

U (P jtA) =

8><>:
V > 0 if P = A

v 2 (0; V ) if P = B

0 if P = C;

and U (P jtB) =

8><>:
V > 0 if P = B

v 2 (0; V ) if P = A

0 if P = C:

(1)

For the sake of simplicity, minority voters are assumed to prefer C and be indi¤erent

between A and B; hence their dominant strategy is to vote for C (all the results however ex-

tend to the case in which they have a strict preference between A and B). As a consequence,

to beat C, either A or B must receive at least nC ballots. We focus on the interesting case

in which C-voters represent a large minority: n�1 > nC > n=2.5 The upshot is that, while

C is a Condorcet loser, it can win if active voters split their votes between A and B.6

5When the minority is small, i.e. nC < n=2; alternative C cannot win without support from majority
voters and is thus not a real threat.

6An alternative interpretation of our setup is that voters vote on whether to reform a status quo policy
(C). Two policies could replace this status quo (A and B), and a quali�ed majority of nC=n is required for
passing a reform (see e.g. Dewan and Myatt 2007).
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Timing. At time 0, nature selects one out of two states of nature ! 2 fa; bg, with
probabilities q (a) and q (b) = 1� q (a) respectively.

At time 1, each voter is assigned a type t 2 T = ftA; tBg ; by iid draws of a binomial
distribution with conditional probabilities 1 > r (tj!) > 0 and r (tAj!) + r (tBj!) = 1:

These probabilities are common knowledge and vary with the state of nature: r (tAja) >
r (tAjb) :We shall say that the distribution is unbiased if r (tAja) = r (tBjb). Conversely, the
distribution is biased if r (tAja) 6= r (tBjb). By convention, we focus on the case in which
the �more abundant�type is tA: r (tAja) + r (tAjb) � 1.

At time 2, a public signal s 2 S = fs0; sa; sbg about the state of nature is observed by
everyone. We consider two polar scenarios:

1. Under Aggregate Uncertainty (AU), the signal is s0 with probability 1, independently

of the state of nature. The public signal is thus uninformative.

2. Under No Aggregate Uncertainty (NAU), with probability 1 the signal is sa (respec-

tively sb) if the state of nature is a (resp. b). The public signal is then fully informative.

The di¤erence between these two scenarios is at the core of our analysis: we want to

study how the voters� information about the expected support for each candidate a¤ects

voting equilibria. Intuitively, the two di¤erent scenarios distinguish between the case in

which, before the election, opinion polls are either so accurate that they leave absolutely no

doubt about the expected ranking of the three alternatives, or the polls leave some (possibly

minimal) uncertainty about it. In the former case, we have no aggregate uncertainty : voters
know the exact parameters of the distribution of types �though not the count of the actual

number of voters. If opinion polls can only reveal partial information about this support �in

the sense that the expected fraction of voters supporting each alternative remains uncertain

�we have aggregate uncertainty.7

Under AU, and since types are observed only privately, each voter updates her beliefs

about the state of nature according to:

q (!jt; s0) = q(!) r(tj!)
q(a) r(tja)+q(b) r(tjb) : (2)

This implies that types tA put more weight on the state being a than types tB.
7Another way to model these two scenarios would be to make the following assumptions about the states

of nature: under no aggregate uncertainty, the probability of one of the two states would be zero. Under
aggregate uncertainty, both states occur with positive probability. The only problem with that modeling
strategy is that the two scenarios consider di¤erent parameter values.
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Under NAU, the public signal trumps the other pieces of information: voters update

their beliefs to q (ajt; sa) = 1 and q (bjt; sb) = 1 independently of their type. Finally, the

election is held at time 3: the alternative with the largest number of votes wins the election
�ties are broken by a fair dice �and payo¤s are realized.

Strategy space. Each voter may either vote for one of the three alternatives that compete
for election or abstain. The action set 	 is thus:

	 = fA;B;C;?g :

A strategy is a mapping � : T � S ! 4 (	), the set of probability distributions over the
action set. �t;s ( ) denotes the probability that a voter with type t and public signal s plays

action  2 	. Note the focus on symmetric strategies (i.e. voters with the same type and
signal vote in the same way): this re�ects the idea that voters are anonymous.

De�nition 1 We can distinguish between state-contingent strategies and non-state-

contingent strategies. The former are such that �t;sa ( ) 6= �t;sb ( ). The latter are such

that �t;s ( ) = �t;s0 ( ) 8t; s; s0:

Quite obviously, state-contingent strategies are only possible when there is no aggregate

uncertainty. Under aggregate uncertainty, voters do not have su¢ cient information about

the state of nature. Hence, all strategies must be non-state-contingent.

Given a strategy �, the expected vote share of an action  in state ! is �! (�) =P
t �t ( )�r (tj!). The expected number of ballots  cast by active voters is E [x ( ) j!; �] =

�! (�)�n: An action pro�le x is the vector that lists the realized number of ballots  after
the election has occurred.

2.2 Equilibrium Analysis

This section contrasts which equilibria exist and are �robust� in each of the two scenarios

under consideration: Aggregate Uncertainty (AU) and No Aggregate Uncertainty (NAU).

We divide this analysis into four parts. The �rst subsection details necessary preliminaries.

The second shows that Two-Party (aka Duverger�s Law) Equilibria always exist. The third

proves that a Sincere Voting Equilibrium exists and is robust when there is AU, but is

knife-edge or non-existent under NAU. The fourth subsection focuses on large elections and

shows that three-candidate equilibria may exist and be stable for any level of AU.
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2.2.1 Preliminaries: Payo¤s and the Equilibrium Concept

Before starting the equilibrium analysis, note that our setting has been simpli�ed in such

a way that voting for C is a dominated action for both majority types tA and tB, whereas

it is a dominant action for types tC . The purpose of this simpli�cation is to move quicker

through the theoretical analysis. Yet, there will be no doubt that each of the results is

robust to the extension in which types tC have a strict preference between A and B.

What is the trade-o¤ faced by majority-voters? They have to make a decision between

voting A or B given their type (tA or tB) and the public signal s 2 fs0; sa; sbg. This decision
is made without knowing the actual number of voters of each type in the population. They

base their decision on the expected value of each action, which depends on pivot events: a

voter�s ballot only a¤ects her utility if it in�uences the outcome of the election. We denote

by pivQP the event that one voter�s ballot changes the outcome from a victory of P towards

a victory of Q. The probability of pivQP in state ! 2 fa; bg is denoted p!QP :

Since nC > n=2 a ballot can never be pivotal between A and B (see Lemma 2 in

Appendix A1).8 Hence, for a given strategy �; the value of voting A or B (over abstention)

for each type t 2 ftA; tBg and public signal s 2 fs0; sa; sbg simpli�es to:9

G(AjtA; s; �) = q (ajtA; s)V paAC + q (bjtA; s)V pbAC ;

G(BjtA; s; �) = q (ajtA; s) vpaBC + q (bjtA; s) vpbBC ;

G(AjtB; s; �) = q (ajtB; s) vpaAC + q (bjtB; s) vpbAC ; and

G(BjtB; s; �) = q (ajtB; s)V paBC + q (bjtB; s)V pbBC :

In these payo¤ functions, the pivot probabilities depend on the strategy � through the

expected vote shares �!P . Pivot probabilities are continuous in � and maximized when the

expected number of votes of a majority party is equal to nC . For instance: argmax�!A p
!
AC =

nC=n. One can also check that when A�s expected vote share is above that of B, the

probability of being pivotal in favor of the former is larger than for the latter (see Lemma

1 in Appendix A1). In that case indeed, B has a lower probability of victory and one

additional vote for B is less likely to change the outcome.

We are now ready to de�ne our equilibrium concept. We follow Fey (1997), who analyzes

the stability of equilibria using a concept initially developed by Palfrey and Rosenthal

8The model can however be directly extended to a random number of tC voters, in which case both p!AB
and the probability of a three-way tie are generally strictly positive.

9Note that max[G(Ajt; s); G(Bjt; s)] � 0 for any t and s, and hence that abstention is dominated.
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(1991):10

De�nition 2 (Equilibrium Concept) A strategy �� is an expectationally stable equi-

librium if 8t and s, there exists an " > 0 such that:

(i) ��t;s (P ) > 0) G (P jt; s; ��)�G (Qjt; s; ��) � 0, 8Q 2  and

(ii) 8�0t;s (A) 2 [��t;s (A)� "; ��t;s (A) + "] \ [0; 1] and �0t;s (B) = 1� �0t;s (A) ;

�0t;s (A) 7 ��t;s (A)) G
�
Ajt; s; �0

�
? G

�
Bjt; s; �0

�
:

The �rst element of this de�nition is a basic best-response requirement: a voter will only

cast a P -ballot if it maximizes her expected utility. The intuition for the second element

is similar to the concept of stability in Cournot-type competition. Consider the following

tâtonnement process: let �0tA;s(A) be some arbitrary initial strategy in the neighborhood of

the equilibrium: For this strategy, a public opinion poll reveals the expected vote shares of

each party, which allows voters to compute their best responses. Now, let tA voters ��-adapt�

their strategy, i.e. choose a new strategy �1tA;s(A) 2 [�
0
tA;s
(A)��; �0tA;s(A)+�]\ [0; 1]; where

� is positive but arbitrarily small. Then, starting a new iteration: given �1tA;s(A), a new

poll lets voters calculate their new best response, ��-adapt�their strategy, and so on. The

equilibrium is said to be expectationally stable if this iteration process produces a sequence

�ktA;s(A), k = 1; 2; ::: that converges to �
�
tA;s

(A). Conversely, we exclude equilibria that are

not expectationally stable. The reason we focus on this class of equilibria is that stability is

essential to identify which equilibria can be expected to be observed in the laboratory (and

in real life).

2.2.2 Two-Candidate Equilibria: Duverger�s Law

Traditional analyses such as Palfrey (1989) suggest that only Duverger�s Law equilibria can

be expected to arise:

De�nition 3 A Duverger�s Law equilibrium is an equilibrium in which only two candidates

obtain a strictly positive fraction of the votes.

The intuition for the existence of such equilibria is that, when a majority party�s ex-

pected vote share is too low, the probability of being pivotal for that party becomes ex-

tremely small. To avoid wasting their ballot, majority voters then prefer to coordinate on
10The traditional re�nement concepts (e.g. trembling-hand perfection and properness) do not have much

bite in the context of voting games �see e.g. De Sinopoli (2000).
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the other majority party. Our �rst proposition shows that this logic applies to both AU and

NAU, simply because the state of nature becomes irrelevant to determine a party�s ranking

if its vote share is arbitrarily close to zero anyway:

Proposition 1 Duverger�s Law equilibria always exist and are always expectationally sta-
ble, both under Aggregate Uncertainty (AU) and No Aggregate Uncertainty (NAU).

Proof. See Appendix A2.

Yet, the set of feasible Duverger�s Law equilibria does depend on the information avail-

able to voters: when the signal is s0, the only two feasible strategies are �t;s (A) = 1 and

�t;s (B) = 1; t = tA; tB. If instead voters receive a public signal about the state of nature,

two other Duverger�s Law equilibria can be reached: �rst, majority voters can coordinate on

A when the state is a and on B when the state is b �this is the socially optimal equilibrium.

Second, they can coordinate on A when the state is b and on B when the state is a �this

is the most socially detrimental Duverger�s Law equilibrium. Expectational stability does

not help predict which of these equilibria is most likely to be selected.

2.2.3 Three-Candidate Equilibria: Sincere Voting

Duverger�s Law equilibria are typically opposed to the �sincere voting equilibrium�:

De�nition 4 The sincere voting equilibrium is such that, conditional on a public signal,

tA-voters prefer to vote for A, and tB-voters to vote for B.

We will say that the sincere equilibrium exists with probability 1 when it exists for any

value of the public signal.

The consensus in the literature is that, for most distributions of preferences in the

electorate (implicitly: under NAU), a sincere voting equilibrium does not exist (see e.g.

Palfrey 1989, Myerson and Weber 1993, and Fey 1997). As shown in Proposition 2 below,

the condition behind the existence of the sincere voting equilibrium is that the two majority

candidates have (almost) identical vote support.11 The intuition is the �ip-side of the one

behind Duverger�s Law equilibria: all majority voters would rally behind the strongest of

the two majority candidates unless they both have a similar probability of defeating C.

11The di¤erence in support that can be sustained in the sincere voting equilibrium crucially depends on
the size of the electorate: the larger the electorate, the smaller the admissible proportional di¤erence.
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Proposition 2 Under No Aggregate Uncertainty (NAU), 8n; nC ; and a given public signal
s! 2 fsa; sbg, the sincere voting equilibrium only exists if jr (tAj!)� 1=2j < � (n; nC) ; with

� (n; nC) > 0: It is then expectationally stable.

Proof. See Appendix A3.

This condition for existence of the sincere voting equilibrium is obviously quite restric-

tive. Actually, it is easy to show that in a world with heterogenous preference intensities

among majority voters (e.g. v that varies among supporters of a given candidate), this con-

dition is almost never satis�ed. Indeed, voters who are close to being indi¤erent between

the two majority candidates will abandon their preferred candidate for any small di¤erence

in the support of these two candidates. In such a NAU world, the sincere voting equilibrium

is knife edge.

Comparing NAU with AU, we can show that:

Proposition 3 If the sincere voting equilibrium exists in both states of nature under No

Aggregate Uncertainty (NAU), then it also exists under Aggregate Uncertainty (AU).

Proof. See Appendix A3.

The sincere voting equilibrium thus exists with probability 1 as soon as it exists in both

states of nature under AU (note still that, from Proposition 2 the sincere equilibrium may

only exist in one state of nature). The converse is not true: a sincere equilibrium might

exist under AU, and not exist in either state under NAU. Indeed, Proposition 4 shows that

the sincere voting equilibrium can exist under AU even when the expected support for the

two majority candidates always strongly di¤ers from 1/2:

Proposition 4 Under Aggregate Uncertainty (AU), for any r (tAja) = k, if q(b)
q(a) 2�

r(tB ja)
r(tB jb) ;

r(tAja)
r(tAjb)

�
; there exists a value � (n; nC ; k) > 0 such that for any jr (tBjb)� kj <

� (n; nC ; k) the sincere voting equilibrium exists. It is then expectationally stable.

Proof. See Appendix A3.

Why is sincere voting more likely to arise under AU? The reason is that a vote may

in�uence the election outcome quite di¤erently in the two states of nature. In particular, a

voter may prefer to vote for her most-preferred candidate, say B, even if he is not a serious

contender in state a: Such behavior is rational if B can be expected to be a serious contender
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in state b:12 This explains why some voters may face ex post regret: when they learn the

state of nature after the election, the supporters of one of the two majority candidates will

realize that they would have bene�tted from voting for the other majority candidate. Such

ex post regret is quite frequent. Consider, for instance, Ralph Nader�s Florida supporters in

the 2000 US presidential election, or left-wing voters in the �rst-round of the 2002 French

Presidential election.

2.2.4 Three-Candidate Equilibria: Beyond Sincere Voting

The above results only o¤er a very partial characterization of which equilibria may exist:

when there is no aggregate uncertainty, only Duverger�s Law equilibria are expectationally

stable. Conversely, the sincere voting equilibrium is expectationally stable when there is

�su¢ cient�aggregate uncertainty, in the sense that the two states of nature are �su¢ ciently

likely�and �su¢ ciently symmetric�(r (tAja) is not too di¤erent from r (tBjb)). These results
do not address two issues: (1) What happens when one state of nature is very unlikely? (2)

What happens when the two states are not �su¢ ciently symmetric�?

To address these questions, we focus on the case of large elections (i.e. n; nC !
1). This stacks the deck against the existence of the sincere voting equilibrium: since
� (n; nC ; k)!n;nC!1 0; the �su¢ ciently symmetric condition�becomes extremely demand-

ing.

To address question (1), our next proposition shows that, in large elections, essentially

any tiny risk of a reversal is su¢ cient to ensure the existence of a stable equilibrium in the

immediate vicinity of sincere voting:

Proposition 5 Consider a distribution of voters that is unbiased (r (tAja) = r (tBjb)) and
such that r (tAja) > nC=n. Then, for any q (a) 2 (0; 1), Aggregate Uncertainty (AU) is a
necessary and su¢ cient condition for the existence of an expectationally stable equilibrium

arbitrarily close to sincere voting (�tA;s0 (A) ' �tB ;s0 (B) ' 1) when population size is large.

Proof. See Appendix A4.

This result is in sharp contrast with the traditional analyses that assume away AU.

Indeed, an implication of Proposition 5 is that an �almost sincere�equilibrium must exist if

there is any positive probability that popular support for the two majority candidates can
12 Interestingly, under AU, heterogenous preference intensities would not hinder the existence of the sincere

voting equilibrium. Even voters who are close to indi¤erence between A and B have a strict incentive to
vote sincerely.
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be reversed. The result that sincere voting is a knife edge equilibrium is only valid when

this probability of reversal is exactly zero. In real-life elections, opinion polls must thus be

extremely accurate to prevent the existence of the sincere voting equilibrium. In particular,

they must completely exclude the possibility that the support for the two majority candi-

dates could be reversed. Arguably, this can only happen when the gap between these two

candidates is very high. This rationalizes the empirical evidence about Duverger�s Law in

Cox (1997, chapter 4): he shows that the voters�propensity to vote sincerely is much higher

when the percentage gap between the �rst and second parties is su¢ ciently high.

Beyond the above proposition, our next result shows that even if the probability of a

symmetric reversal (r (tAja) = r (tBjb)) is nil, other, non-sincere, three-candidate equilibria
exist. A su¢ cient condition for such equilibria to be stable is that each majority candidate

has a positive probability of being a serious contender:

Proposition 6 Consider a distribution of voters that is biased and such that r (tAja) >
r (tBjb) > nC=n. Then, for any q (a) 2 (0; 1) ; Aggregate Uncertainty (AU) is a necessary
and su¢ cient condition for the existence of an expectationally stable equilibrium such that all

candidates receive a strictly positive vote share, but voters do not vote sincerely (�tA (A) 2
(0; 1) and �tB (B) = 1).

Proof. See Appendix A4.

Proposition 6 highlights that a symmetric reversal is not necessary to sustain an ex-

pectationally stable three-candidate equilibrium. The key condition is that both majority

candidates may have larger support than the minority. This condition is su¢ cient to ensure

that, at the equilibrium, A is the expected winner in state a and B is the expected winner

in state b: Then, the equilibrium is expectationally stable: suppose that some voters deviate

from equilibrium by voting more for A: This implies that C is now a more serious threat

in state b: To rebalance risks, these voters now strictly prefer to vote for B: In the words

of Myatt (2007), under AU, the three-candidate equilibrium features a negative feedback :

voters abandoning their most-preferred candidate decrease the incentives of other voters

(with the same type) to do so.

This result contrasts with, e.g. Myerson and Weber (1993) and Fey (1997), who consider

a world with NAU. In that world, the three-candidate equilibrium requires that the two

majority candidates have exactly the same expected vote shares. Indeed, since there is no

AU, there is no incentive to balance risks across states. The equilibrium thus features a

positive feedback: any small deviation triggers a desire by all majority voters to coordinate
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behind the same majority candidate � it is never expectationally stable. For a formal
argument, see Proposition 7 in Appendix A5.

3 Experimental Analysis

We ran a series of experiments in order to test our theoretical predictions. Obviously, we

must focus here on the results of Propositions 1-4, because the laboratory is not suited to

test large election results. Still, as we saw in Propositions 5 and 6, these theoretical results

extend �actually in a stronger version �to large electorates.

3.1 Experimental Design and Procedures

We introduced subjects to a game that had the exact same structure as the model of Section

2.1. All participants were given the role of an active voter; passive voters were simulated by

the computer.13 Subjects were allocated to groups of size n = 12 and the size of the group

of passive voters was nC = 7. The two states of nature were called blue jar and red jar,

whereas the types were called blue ball and red ball. One of the jars was selected randomly

by the computer, with equal probability.

The blue jar contained 2=3 of blue balls and 1=3 of red balls. The red jar contained

2=3 of red balls and 1=3 of blue balls: the distribution was unbiased. One ball was then

randomly selected (with replacement) for each participant. After seeing his/her ball, each

subject could vote for any one of three candidates: blue, red or gray.14 Blue and red were the

two majority candidates whereas gray was the minority candidate. Subjects were informed

that the computer would cast nC = 7 votes for gray in each election.

The subjects�payo¤ depended on their type and on the election winner. If the color of

the winner matched that a given participant�s ball (type), this participant had a payo¤ of

e2. If the winner was blue or red but did not match the color of the subject�s ball, his/her

payo¤ was e1.1. Finally, if gray won, all subjects�payo¤ was e0.20.

We ran two treatments: in the Aggregate Uncertainty treatment (AU) the selected jar

13Morton and Tyran (2012) show that preferences in one group are not a¤ected by preferences of an
opposite group. Therefore, having computerized rather than human subjects should not alter the behavior
of majority voters in a signi�cant way. In Battaglini et al. (2008, 2010), partisans equivalent to our passive
voters are also simulated by the computer, and Bouton et al. (2014) follow a similar experimental strategy.

14As in Guarnaschelli et al. (2000), abstention was not allowed (remember that abstention is a weakly
dominated action in our setup). In a setting related to ours, Forsythe et al. (1993) allowed for abstention
and found that the abstention rate was as low as 0.65%.
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was not revealed before voting, whereas it was in the No Aggregate Uncertainty treatment
(NAU). Everything else was held constant across the two treatments.

Experiments were conducted at the Experimental Economics Laboratory at the Univer-

sity of Valencia (LINEEX) in November 2014. We ran one session for each treatment, with

60 subjects (or 5 independent groups) each. No subject participated in more than one ses-

sion. Students interacted through computer terminals, and the experiment was programmed

and conducted with z-Tree (Fischbacher 2007). All experimental sessions were organized

along the same procedure: subjects received detailed written instructions (see Appendix

A6), which an instructor read aloud. Before starting the experiment, subjects were asked to

answer a questionnaire to check their full understanding of the experimental design. Right

after that, they played one of the treatments for 80 periods in �xed groups.15 At the end of

each period, subjects were given the following information: (i) which was the selected jar;

(ii) which color won the election, (iii) the number of votes for each alternative and (iv) their

payo¤ for that period. To determine payment at the end of the experiment, the computer

randomly selected eight periods and participants earned the total of the amount earned in

these periods. In total, subjects earned an average of e15.22, including a show-up fee of

e4. Each session lasted approximately 75 minutes.

3.2 Equilibria and Hypotheses

In this section, we summarize the results of Propositions 1-4 and use them to formulate

testable hypotheses. Section 2 identi�ed two types of equilibria: Duverger�s Law vs. Sincere

Voting. Under the parameters chosen for the experimental setting, Sincere Voting is only

an equilibrium in the AU treatment. Which of the various Duverger�s Law equilibria can

materialize also depends on the treatment: there are two such equilibria in AU. One in which

all majority voters coordinate on voting blue, and the other one in which they coordinate on

red. Two additional equilibria in state-contingent strategies can emerge in treatment NAU:

voting for the color of the selected jar (voting the jar for short) and voting for the majority

color opposite to that of the selected jar (voting opposite for short). Table 1 summarizes

these results.

15We chose to have �xed matching for two reasons. First, �xed matching creates a shared history that
facilitates subjects� learning about the strategies played by other subjects, and hence coordination. For
instance, Forsythe et al. (1993, 1996) observe that Duverger�s Law equilibria emerge more easily among
voters with a common history � see also Rietz 2008. Thus, by making this choice, we stack the deck
against the presence of sincere voting equilibria in treatment NAU. Second, having �xed matching allows
for comparability with the results Bouton et al. (2014), which analyzes a similar setup but with common
values.
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Type of Equilibrium AU NAU
Sincere Voting X �
Duverger�s Law Blue X X

Red X X
Voting the jar � X
Voting opposite � X

Table 1: Set of equilibria in each treatment.

The main testable implication for our theoretical results is thus that:

Hypothesis 1 The frequency of sincere voting will be (weakly) higher in treatment AU than
in treatment NAU.

Beyond this hypothesis, and despite the fact that our theory is silent about equilibrium

selection, we can make an informed conjecture about which of these equilibria are most

likely to arise. Bouton et al. (2014) shows that, even with common values, Duverger�s Law

equilibria are slow to emerge �when they emerge at all �in symmetric environments. We

thus expect sincere voting to be a focal strategy in treatment AU:

Hypothesis 2 In treatment AU, voters will converge to the sincere voting equilibrium.

By contrast, sincere voting is not an equilibrium in treatment NAU. But, which of

the four possible Duverger�s Law equilibria will voters select? Since the distribution of

preferences is known, an obvious �strong contender�emerges. This should produce a strong

incentive to vote for that candidate (see Section 2.2.2). We thus expect voters to coordinate

on the Pareto dominant equilibrium:

Hypothesis 3 Groups in treatment NAU will converge to the state-contingent Duverger�s
Law equilibrium and vote the jar.

3.3 Experimental Results

We �rst detail the results for the AU and NAU treatments respectively. Then, in Section

3.3.3, we put these results in perspective by comparing them and we test our main hypothesis

(i.e. Hypothesis 1). Unless stated otherwise, the results use all the data of the experiment.

Still, all the results are robust to only considering the last 40 or 20 periods.
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Figure 1: Aggregate behavior in each group in treatment AU. The blue, red, and gray lines display
the aggregate frequency of voting that color. The green line represents the frequency of sincere
voting. The dashed black line represents the number of votes required to defeat the Condorcet loser.

3.3.1 Aggregate Uncertainty (AU)

Figure 1 displays aggregate behavior in treatment AU, separated by group. In particular,

the blue, red and gray lines correspond to the frequency of voting blue, red or gray by

blocks of 5 periods. In addition, we computed the fraction of the votes that are �sincere�

(a red or blue vote when the voter respectively received a red or blue ball). This fraction is

displayed by the green line.16 Finally, the dashed horizontal line represents the number of

votes required to defeat the Condorcet loser.

Consider �rst the subjects� propensity to vote for each alternative. Based on that

information, we �rst observe that almost no vote goes to gray. Second, we can contrast two

types of dynamics among these groups: groups 1, 2 and 5 continuously display split support

for blue and red. In these groups, the frequencies of voting blue and red hover around 50%

16Clearly, while the frequencies of voting blue, red and gray must sum to 1, the frequency of voting
sincerely only sums to one with the probability of voting against one�s color (not displayed).
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Figure 2: Individual Behavior in groups in treatment AU. Each panel corresponds to a di¤erent
group. A, B, C... to L in the vertical axis refer to each of the 12 players in each group. Each line
plots the strategies identi�ed throughout the 80 periods.

throughout the entire experiment.17 By contrast, the propensity to vote red declines over

time in groups 3 and 4, suggesting progressive convergence to the blue Duverger�s Law

equilibrium.

The evidence of sincere voting is di¤erent �actually much more mixed �when we control

for subject type. This allows us to identify which of the red and blue votes are actually

�sincere�. Figure 1 shows that subjects�propensity to vote sincerely remains above 66% in

groups 1, 2 and 3, whereas it is slightly below in group 4 and is lowest in group 5.18 This

contrasts with the picture that emerged when we ignored subject type and only focused on

the shares of blue and red votes: groups 3 and 4 seemed to converge to the blue Duverger�s

Law equilibrium,19 whereas vote shares in group 5 seemed consistent with sincere voting.

This shows why it is crucial to control for voter preferences when bringing the model to

the data. Yet this mixed evidence also cries for more detail about the subjects�individual

strategies to identify whether an equilibrium is reached �and which one.

17These frequencies are 45:41% and 53:43% in group 1; 43:64% and 55:21% in group 2; and 54:68% and
44:38% in group 5.

18The fraction of sincere ballots was 85:94%, 77:50%; 75:63%, 71:25%; and 64:37% in groups 1-5 respec-
tively.

19The levels of sincere voting is unusually high in group 3 given the high frequency of voting for blue.
This is because the realized frequency of the blue jar being selected was higher than its expected value:
57.50%.
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Our experimental data, which provides a sequence of 80 choices for each subject allow

us to do that. We propose the following identi�cation procedure to identify the subjects�

actual strategy: �rst, we identify a set of 7 plausible pure strategies: (1) voting for blue,

(2) voting for red, (3) voting for gray, (4) voting sincerely, (5) voting opposite to sincerely

(that is, for the majority color that does not coincide with the ball), (6) voting the jar and

(7) voting opposite to the jar (the last two strategies are only relevant in treatment NAU,

see below). Second, we attribute a particular strategy to a subject in a particular period if

such strategy was played for at least �ve consecutive periods. This will uniquely identify a

strategy in most cases. When a subject�s actions are compatible with more strategies, we

attribute the compatible strategy that he/she played the most across the 80 periods of the

experiment.

The number of plays compatible with one of these pure strategies is as high as 75.77%.

Figure 2 displays these identi�ed strategies: each panel corresponds to an independent

group and each line to a particular subject in that group. One remarkable feature is the

predominance of green, which reveals the large number of subjects who play the sincere

voting strategy. The �ve groups are actually ordered by decreasing number of voters who

play that strategy for most periods: the number of voters for which we identify the sincere

voting strategy in at least 40 periods is 8, 6, 6, 4 and 3 in groups 1 to 5 respectively. The

number of subjects who play (for most periods) a pure strategy of voting either blue or

red independently of their types is concomitantly increasing from groups 1 to 4: no subject

adopts such a strategy in group 1; one subject plays red in group 2; and 5 and 7 subjects

play blue in groups 3 and 4. Interestingly, convergence to a Duverger�s Law equilibrium

remained only partial in groups 3 and 4: even though red never won any election in the last

40 periods, respectively 5 and 4 subjects kept voting sincerely. Group 5 displays another

type of coordination failure: �rst, we cannot identify as many strategies as in the other

groups. Second, two subjects vote opposite (a dominated strategy), two vote sincerely and

1 votes blue.

In light of these results, we conclude that Hypothesis 2 must be rejected: while the

modal strategy is sincere voting (among all identi�ed strategies, 63:32% can be attributed

to sincere voting), it is only overwhelming in groups 1 and 2. The subjects are split between

those trying to reach the sincere voting equilibrium and the blue Duverger�s Law equilibrium

in groups 3 and 4 �the number of subjects playing blue is however su¢ cient in these groups

to make blue win respectively 80% and 97.5% of the times in the last 40 periods. Finally,

group 5 does not display any convergence to an equilibrium: gray is the modal winner, with

45% of victories in the last 40 periods.
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Figure 3: Aggregate behavior in each group in treatment NAU. The blue, red, and gray lines
display the aggregate frequency of voting that color. The green line represents the frequency of
sincere voting, and the yellow one represents the frequency of voting for the color of the selected jar.
The dashed black line represents the number of votes required to defeat the Condorcet loser.

3.3.2 No Aggregate Uncertainty (NAU)

Now, let us focus on the NAU treatment, in which subjects were given a perfectly informative

signal about the color of the jar. Figure 3 displays aggregate behavior in each group in

treatment NAU. On top of the lines represented in Figure 1, we add the orange line which

corresponds to the frequency of voting the jar. Figure 3 shows a clear and common pattern

across all groups. Every single group converges to this state-contingent Duverger�s Law

equilibrium. The overall frequency of votes for the jar was 88:22%, with little heterogeneity

across groups (89:58%, 87:81%, 86:25%, 86:46% and 91:04% in groups 6 to 10, respectively).

Interestingly, this is still compatible with a high frequency of sincere voting. Indeed, in

expectation, 2=3 of the subjects receive a ball that matches the color of the selected jar. To

tell these two strategies apart, consider the behavior of those subjects whose ball did not

match: their overall frequency of voting the jar was 67:33% while the frequency of sincere

voting was 30:24%.

Figure 4 displays individual strategies following the identi�cation procedure described in

20



A
B

C
D

E
F

G
H

I
J

K
L

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

6 7 8 9 10

Blue Red Ball Opposite ball Gray Jar

Period

Figure 4: Individual Behavior in groups in treatment NAU. Each panel corresponds to a di¤erent
group. A, B, C... to L in the vertical axis refer to each of the 12 players in each group. Each line
plots the strategies identi�ed throughout the 80 periods.

the previous subsection. Like in Figure 2, each panel corresponds to an independent group

and each line to a particular subject in that group. Interesting patterns stand out. First,

the number of actions compatible with one of the aforementioned pure strategies is very

high (94.96%). Second, the strategy of voting the jar clearly stands out: it represents 71%

of the identi�ed strategies. 58:33% of the subjects played it at least 90% of the time and

23:33% of the subjects played it 100% of the time. Only a small minority of the subjects

vote sincerely: no subject played that strategy 100% of the time and only 11:67% at least

90% of the time. We do not �nd evidence of any other strategy being played consistently.

As a consequence, the color of the selected jar won 99% of the elections. This provides

strong support for Hypothesis 3.

3.3.3 Comparison

In this section we compare behavior across di¤erent treatments and test Hypothesis 1. As we

saw in Section 3.3.1, focusing on the percentage of actions consistent with sincere voting can

give spurious information. The right approach is to exploit the identi�ed strategies. Table

2 summarizes the frequencies of the identi�ed strategies in each treatment. We observe a

clear di¤erence across treatments: among the identi�ed strategies, the percentages of sincere

voting in treatments AU and NAU are 63:32% and 28:15% respectively. This di¤erence is
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Treatment AU Treatment NAU

Blue 26:81 0:15
Red 5:58 0:59
Gray 0:00 0:11
Sincere 63:32 28:15
Opposite 4:29 0:00
Selected Jar � 71:00

% Identi�es strategies 75:77 94:96

Table 2: Percentage of identi�ed strategies in each treatment.

statistically signi�cant (Mann-Whitney, z = 2:611, p = 0:009). We can therefore reject

the null hypothesis that the amount of sincere voting is the same across treatments, and

validate Hypothesis 1. Actually, this comparison holds for every single independent group:

the frequency of sincere voting is at least 44:10% in every group in treatment AU whereas

it is at most 31:21% in treatment NAU. This can be seen in Table 3, which disaggregates

identi�ed strategies by independent group.

Next, we compare the strategies consistent with Duverger�s Law equilibria. In treatment

AU, the strategies consistent with Duverger�s Equilibria are voting blue or voting red. Two

more strategies are available in treatment NAU: voting for or against the selected jar. The

percentage of strategies consistent with any Duverger�s Law equilibrium are respectively

71:74% and 32:39% in treatments NAU and AU.20 This di¤erence is statistically signi�cant

(Mann-Whitney, z = 2:611, p = 0:009). Here again, the di¤erence holds for every group:

even group 4, which has the largest fraction of subject/periods playing blue in treatment AU,

is below group 8, which has the lowest percentage of strategies consistent with a Duverger�s

Law equilibrium in treatment NAU. This result is not an artifact of the slow convergence

observed in treatment AU: the same results hold when we restrict our attention to the last

40 or 20 periods.

Another interesting di¤erence between the two treatments is the overall percentage of

identi�ed strategies, which is 75:77% in treatment AU and 94:96% in treatment NAU.

This di¤erence is statistically signi�cant (Mann-Whitney, z = 2:402, p = 0:016). In our

view this di¤erence is evidence of the strategic uncertainty observed in treatment AU. This

results from the tension between sincere voting and Duverger�s Law (see page 19 and the

Conclusions). Note that, under no aggregate uncertainty, Forsythe et al. (1993) obtain

20Note that this result is robust to restricting the attention to the state-contingent Duverger�s Law
equilibrium under treatment NAU (against all other Duverger�s Law equilibria in treatment AU). Hence,
this comparison is not a mere artifact of having more equilibria in treatment AU.

22



Identi�ed strategy % Identi�ed
Treatment Group Blue Red Gray Sinc Opp Jar Strategies

AU 1 1.71 5.12 0.00 93.17 0.00 - 73.23
2 1.83 19.08 0.00 76.34 2.75 - 68.23
3 43.37 0.62 0.00 55.39 0.62 - 84.06
4 51.32 1.03 0.00 44.10 3.55 - 90.94
5 25.54 4.67 0.00 52.75 17.03 - 62.40

NAU 6 0.00 0.11 0.00 25.53 0.00 74.36 97.50
7 0.00 0.59 0.59 28.52 0.00 70.31 88.75
8 0.65 0.54 0.00 31.21 0.00 67.60 96.46
9 0.00 1.33 0.00 33.70 0.00 64.96 93.65
10 0.11 0.42 0.00 22.12 0.00 77.35 98.44

Table 3: Percentage of identi�ed strategies in each matching group. Modal strategy in each group
is indicated in bold.

convergence to Duverger�s Law equilibria despite the absence of an explicit �public signal�

such as the color of the jar: the sharing of a common history is su¢ cient to make focal a

candidate who fared well in past elections.21 Similarly, in a Condorcet Jury setup, Bouton

et al. (2014) observe that either sincere voting or a Duverger�s Law equilibrium emerges,

depending on the strength of the minority candidate.

4 Conclusions

We used a theory-based experimental approach to test the e¤ects of aggregate uncertainty

on voting behavior in plurality elections. The main theoretical prediction is that voters

should coordinate on only two candidates when there is no aggregate uncertainty, whereas

they can also coordinate on a three-candidate equilibrium under aggregate uncertainty.

The experimental results show that the quantitative impact of aggregate uncertainty is �rst

order. While only 24% of the subjects vote sincerely under no aggregate uncertainty, 61%

do so when there is aggregate uncertainty. The fact that voters do behave according to

Duverger�s Law in one case, and sincerely in the other exposes the claim that the rational

voter model lacks empirical relevance. It suggests instead that it may just be an artifact of

the classical �technically convenient �no aggregate uncertainty assumption.

The experiment also proved valuable to identify issues on which theory is largely silent:

21 It is well known that strong focal points ease coordination. See, for instance, Metha et al. (1994) or
Fehr et al. (2011) and references therein.
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the nature of the voters�coordination problem appears to be qualitatively di¤erent with

and without aggregate uncertainty. Only Duverger�s Law equilibria exist in the absence

of aggregate uncertainty. Then, the coordination problem boils down to identifying one

candidate all majority voters should vote for. The supporters of a candidate expected to

rank third should desert him; this positive feedback loop boosts the top two contenders.

With aggregate uncertainty, Duverger�s Law equilibria coexist with a non-Duverger�s Law

equilibrium. In the latter equilibrium, a candidate expected to be �at risk�may receivemore

support from the electorate; this is Myatt (2007)�s negative feedback loop, which preserves

the support of the third contender. Our experimental results suggest that voters may fail

to agree on which of these two feedback loops should dominate their voting behavior, which

increases the occurrence of coordination failures. Such failures are costly, since they allow

the minority candidate (a Condorcet loser) to win more often than necessary � realized

payo¤s stood 21% below the ones achievable in the absence of coordination failure. These

results thus suggest that coordination failures may contribute strongly to discontent with

the plurality voting system. Future research should shed more light on the circumstances

that could facilitate coordination when there is aggregate uncertainty.

References

Ashworth, S. and E. Bueno de Mesquita (2014), Learning About Voter Rationality,
mimeo, University of Chicago.

Austen-Smith, D. and J. Banks (1996), Information Aggregation, Rationality, and the
Condorcet Jury Theorem, American Political Science Review 90: 34�45.

Battaglini, M., R. Morton and T. Palfrey (2008), Information Aggregation and Strate-
gic Abstention in Large Laboratory Elections, American Economic Review, Papers & Pro-

ceedings, 98(2): 194-200.

Battaglini, M., Morton, R. and T. Palfrey (2010), The Swing Voter�s Curse in the
Laboratory, Review of Economic Studies 77: 61-89.

Bendor, J., D. Diermeier, D. Siegel and M. Ting (2011), A Behavioral Theory of

Elections, Princeton, New Jersey: Princeton University Press.

Blais, A., R. Nadeau, E. Gidengil and N. Nevitte (2001), Measuring Strategic Voting
in Multiparty Plurality Elections, Electoral Studies 20: 343-352.

Bouton, L. (2013), A Theory of Strategic Voting in Runo¤ Elections, American Economic
Review 103(4): 1248-1288.

24



Bouton, L., and M. Castanheira (2009), The Condorcet-Duverger Trade-O¤: Swing
Voters and Voting Equilibria, in Aragonés, E., C.. Beviá, H. Llavador and N. Scho�eld,

eds.: The Political Economy of Democracy. Fundacion BBVA, 121-142.

Bouton, L., and M. Castanheira (2012), One Person, Many Votes: Divided Majority
and Information Aggregation, Econometrica 80(1): 43�87.

Bouton, L., M. Castanheira and A. Llorente-Saguer (2014), Divided Majority and
Information Aggregation: Theory and Experiment, mimeo, Georgetown University.

Caplan, B. (2007), The Myth of the Rational Voter, Princeton, New Jersey: Princeton

University Press.

Castanheira, M. (2003a), Victory Margins and the Paradox of Voting, European Journal
of Political Economy 19: 817-841.

Castanheira, M. (2003b), Why Vote for Losers?, Journal of the European Economic
Association 1(5): 1207-1238

Cox, G. (1997), Making Votes Count, Cambridge, UK: Cambridge University Press.

Degan, A. and A. Merlo (2009), Do Voters Vote Ideologically, Journal of Economic
Theory 144: 1868-1895.

Dewan, T. and D. Myatt (2007), Leading the Party: Coordination, Direction, and Com-
munication, American Political Science Review 101(4): 825-843.

De Sinopoli, F. (2000), Sophisticated Voting and Equilibrium Re�nements under Plurality
Rule, Social Choice and Welfare 17: 655-672.

Dhillon, A. and S. Peralta (2002), Economic Theories of Voter Turnout, Economic
Journal 112(480): F332-F352.

Duverger, M. (1951) Les partis politiques, 2nd edition revised and updated, Paris, France:
A. Colin.

Feddersen, T. (2004), Rational Choice Theory and the Paradox of Not Voting, Journal
of Economic Perspectives 18: 99-112.

Feddersen, T. and W. Pesendorfer (1997), Voting Behavior and Information Aggrega-
tion in Elections with Private Information, Econometrica 65: 1029-1058.

Feddersen, T. and A. Sandroni (2006a), A Theory of Participation in Elections, Amer-
ican Economic Review 96(4): 1271-1282.

Feddersen, T. and A. Sandroni (2006b), The Calculus of Ethical Voting, International
Journal of Game Theory 35: 1-25.

25



Fehr, D., F. Heinemann and A. Llorente-Saguer (2011), The Power of Sunspots: An
Experimental Analysis, mimeo, Queen Mary.

Fey, M. (1997), Stability and Coordination in Duverger�s Law: A Formal Model of Pre-

election Polls and Strategic Voting, American Political Science Review 91(1): 135-147.

Fischbacher, U. (2007), z-Tree - Zurich Toolbox for Readymade Economic Experiments,
Experimental Economics 10: 171-178.

Fisher, S. and D. Myatt (2001), Strategic Voting Experiments, mimeo, University of
Oxford.

Fisher, S. and D. Myatt (2014), Strategic Voting in Plurality Rule Elections, mimeo,
London Business School.

Forsythe, R., R. Myerson, T. Rietz and R. Weber (1993), An Experiment on Co-
ordination in Multi-Candidate Elections: The Importance of Polls and Election Histories,

Social Choice and Welfare, 10: 223-247.

Forsythe, R., R. Myerson, T. Rietz and R. Weber (1996), An Experimental Study
of Voting Rules and Polls in Three-Way Elections, International Journal of Game Theory

25: 355-383.

Fujiwara, T. (2011), A Regression Discontinuity Test of Strategic Voting and Duverger�s
Law, Quarterly Journal of Political Science 6: 197-233.

Good, I. and L. Mayer (1975), Estimating the E¢ cacy of a Vote, Behavioral Science 20:
25-33.

Greene, D. and I. Shapiro (1994), Pathologies of Rational Choice Theory: A Critique

of Applications in Political Science, New Haven, Connecticut: Yale University Press.

Guarnaschelli, S., R. McKelvey and T. Palfrey (2000), An Experimental Study of
Jury Decision Rules, American Political Science Review 94(2): 407-423.

Kawai, K. and Y. Watanabe (2013), Inferring Strategic Voting, American Economic
Review 103(2): 624-662.

Ledyard, J. (1984), The Pure Theory of Large Two-Candidate Elections, Public Choice
44: 7-41.

Mandler, M. (2012), The fragility of Information Aggregation in Large Elections, Games
and Economic Behavior 74: 257�268.

Mehta, J., C. Starmer and R. Sugden, (1994), The Nature of Salience: An Experimen-
tal Investigation of Pure Coordination Games, American Economic Review 84: 658-673.

26



Morton, R. and J.-R. Tyran (2012), Ethical vs Sel�sh Motivations and Turnout in
Small and Large Elections, mimeo, New York University.

Myatt, D. (2007), On the Theory of Strategic Voting, Review of Economic Studies 74:
255-281.

Myatt, D. (2012), A Rational Choice Theory of Voter Turnout, mimeo, London Business
School.

Myerson, R. (1998), Population Uncertainty and Poisson Games, International Journal
of Game Theory 27, 375-392.

Myerson, R. (2002), Comparison of Scoring Rules in Poisson Voting Games, Journal of
Economic Theory 103: 219-251.

Myerson, R. and R. Weber (1993), A Theory of Voting Equilibria, American Political
Science Review 77: 102�114.

Palfrey, T. (1989), A Mathematical Proof of Duverger�s Law, In Models of Strategic Choice
in Politics, edited by P. C. Ordeshook, Ann Arbor, Michigan: University of Michigan Press.

Palfrey, T. (2012), Experiments in Political Economy, forthcoming in Handbook of Exper-
imental Economics Vol. 2 (J. Kagel and A. Roth, eds.), Princeton University Press.

Palfrey, T. and R. Howard (1991), Testing Game-Theoretic Models of Free Riding: New
Evidence on Probability Bias and Learning, In Laboratory Research in Political Economy,

edited by T. Palfrey, Ann Arbor, Michigan: University of Michigan Press.

Piketty, T. (2000), Voting as Communicating, Review of Economic Studies 67: 169-191.

Rietz, T. (2008), Three-Way Experimental Election Results: Strategic Voting, Coordi-
nated Outcomes and Duverger�s Law, Handbook of Experimental Economics.

Riker, W. (1982), The Two-Party System and Duverger�s Law: An Essay on the History

of Political Science, American Political Science Review 84: 1077-1101.

Spenkuch, J. (2013), Please Don�t Vote for Me: Voting in a Natural Experiment with
Perverse Incentives, Economic Journal, forthcoming.

Spenkuch, J. (2014), (Ir)rational Voters?, mimeo, University of Chicago.

27



Appendices

Appendix A1: Pivot probabilities and preliminary proofs

First, note that a vote, say for A, can only be pivotal against C if it either breaks a tie

(xA = xC without that vote) or makes a tie (xA = xC � 1 without that vote). Given the
binomial distribution of tA and tB voters and their strategies �tA and �tB that determine

the expected vote shares �A and �B. When voters play undominated strategies, we have:

�!A (�; s) = r (tAj!)� (AjtA; s) + r (tBj!)� (AjtB; s) ;

�!B (�; s) = r (tAj!) (1� � (AjtA; s)) + r (tBj!) (1� � (AjtB; s)) ;

and C receives exactly nC votes. The pivot probabilities are given by:

p!AC � Pr (pivAC j!) =
(n� 1)!
2

(�!A)
nC�1(�!B)

n�nC�1

(nC�1)!(n�nC�1)!

�
�!A
nC

+
�!B

n� nC

�
; (3)

p!BC � Pr (pivBC j!) =
(n� 1)!
2

(�!B)
nC�1(�!A)

n�nC�1

(nC�1)!(n�nC�1)!

�
�!B
nC

+
�!A

n� nC

�
; (4)

where the two terms between brackets represent the cases in which one vote respectively

breaks and makes a tie. Note that pivot probabilities are continuous in �!A and �
!
B.

To characterize equilibrium, it will prove useful to characterize the payo¤ di¤erence

between actions A and B. Dropping the conditioning on � for the sake of brevity, we have:

G (AjtA; s)�G (BjtA; s) = q (ajtA; s) [V paAC � vpaBC ] + q (bjtA; s) [V pbAC � vpbBC ];(5)

G (AjtB; s)�G (BjtB; s) = q (ajtB; s) [vpaAC � V paBC ] + q (bjtB; s) [vpbAC � V pbBC ]:(6)

It is straightforward to check that:

G (AjtA; s)�G (BjtA; s) � G (AjtB; s)�G (BjtB; s) : (7)

We are now in a position to characterize the following three lemmas:

Lemma 1 The pivot probability ratio p!AC=p
!
BC is strictly larger than 1 and increasing to

in�nity for nC=n = k and n!1 if and only if �!A > �!B.
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Proof. Consider the case in which �!A > �!B. From (3) and (4) ; we have:

p!AC
p!BC

=
(�!A)

nC�1 (1� �!A)
n�nC�1

(1� �!A)
nC�1 (�!A)

n�nC�1

�!A
nC
+

1��!A
n�nC

1��!A
nC

+
�!A

n�nC

=

�
�!A

1� �!A

�2nC�n �!A
1��!A

+ nC
n�nC

1 +
�!A
1��!A

nC
n�nC

:

Noting that this pivot probability ratio is equal to 1 in �!A = 1=2 and that it is strictly increasing in

�!A proves the Lemma.

Lemma 2 p!AB = 0:

Proof. Given that nC > n=2, if the vote count for A and for B are equal, it must be that both are

strictly below nC , in which case, neither A nor B may win.

Lemma 3 If an equilibrium �� is strict, i.e. all voters have strict best response, then ��

is necessarily expectationally stable. The converse is not true.

Proof. In a strict equilibrium, 8t; s, we must have either G(Ajt; s) > G(Bjt; s) or G(Ajt; s) <
G(Bjt; s): Now, consider any P such that 9t; s such that �t;s (P ) = 1: By the continuity of G (P jt; s)
in the �s, we have that 9" > 0 such that if �t;s (A) > 1 � "; then G (P jt; s) > G (P 0jt; s) with
P 0 6= P 2 fA;Bg:

Appendix A2: Proof of Section 2.2.2

Proof of Proposition 1. Consider e.g. �tA;s (A) = " and �tB ;s (B) = 1: From (3) and (4), we

have:
p!AC
p!BC

=

�
�!A
�!B

�2nC�n �!A (n� nC) + �!BnC
�!AnC + �

!
B (n� nC)

!
"!0

0:

Hence, from (5) and (6), there exists a non-empty set (0;K) such that G (Ajt; s)�G (Bjt; s) < 0; 8t; s
whenever " is in this set. The equilibrium being strict, expectational stability follows immediately

(Lemma 3).

Appendix A3: Proofs of Section 2.2.3

Proof of Proposition 2. We focus on the case s! = sa and start with r (tAja) = r (tB ja) :
Under sincere voting, �tA;sa (A) = 1 = �tB ;sa (B), (3) and (4) imply p

a
AC = paBC : Thus, from (5), we

have:

G (AjtA; sa)�G (BjtA; sa) = V paAC � vpaBC
= paAC [V � v] > 0:
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Similarly, from (6) ; we have that:

G (AjtB ; sa)�G (BjtB ; sa) = vpaAC � V paBC ;
= paAC [v � V ] < 0

Sincere voting is thus an equilibrium strategy. Next, by the continuity of pivot probabilities with

respect to �!A and �
!
B ; there must exist a value � (n; nC) > 0 such that sincere voting is an equilibrium

for any jr (tAja)� r (tB ja)j < � (n; nC).

Expectational stability directly follows from the fact that the equilibrium is �strict�(Lemma 3).

Proof of Proposition 3. The proof is straightforward. For the sincere voting equilibrium to

exist in state ! under NAU, we must have:

G (AjtA; s)�G (BjtA; s) � 0 � G (AjtB ; s)�G (BjtB ; s) : (8)

Now, note that, under AU, we have that

G (Ajt; s0)�G (Bjt; s0) � q (ajt; s0) [G (Ajt; sa)�G (Bjt; sa)] + q (bjt; s0) [G (Ajt; sb)�G (Bjt; sb)]

Thus, if condition (8) is satis�ed in both states of nature, we must have that

G (AjtA; s0)�G (BjtA; s0) � 0 � G (AjtB ; s0)�G (BjtB ; s0) :

Proof of Proposition 4. First, note that

q (ajtA) > q (bjtA) and q (ajtB) < q (bjtB) ;

if and only if r(tAja)r(tAjb) >
q(b)
q(a) >

r(tB ja)
r(tB jb) :

Second, consider the unbiased case, i.e. r (tAja) = r (tB jb) : Under sincere voting, �tA;s0 (A) =
1 = �tB (B), (3) and (4) imply p

a
AC = pbBC > pbAC = paBC : Then, from (5), we have that (we drop

the notation s0 to ease readability):

G (AjtA)�G (BjtA) = q (ajtA) [V paAC � vpaBC ] + q (bjtA) [V pbAC � vpbBC ];
= q (ajtA) [V paAC � vpbAC ] + q (bjtA) [V pbAC � vpaAC ];
= V

�
paACq (ajtA) + pbACq (bjtA)

�
� v

�
paACq (bjtA) + pbACq (ajtA)

�
;

> v
�
paAC � pbAC

�
(q (ajtA)� q (bjtA)) > 0
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The �rst inequality comes from equating V = v: Similarly, from (6) ; we have that:

G (AjtB)�G (BjtB) = q (ajtB) [vpaAC � V paBC ] + q (bjtB) [vpbAC � V pbBC ];
= q (ajtB) [vpaAC � V pbAC ] + q (bjtB) [vpbAC � V paAC ];
= v

�
paACq (ajtB) + q (bjtB) pbAC

�
� V

�
pbACq (ajtB) + paACq (bjtB)

�
< V

�
paAC � pbAC

�
(q (ajtB)� q (bjtB)) < 0:

Again, the �rst inequality comes from equating V = v: Sincere voting is thus an equilibrium strategy.

Third, by the continuity of pivot probabilities with respect to �!A and �
!
B ; it immediately follows

that there must exist a value � (n; nC) > 0 such that sincere voting is an equilibrium for any

jr (tAja)� r (tB jb)j < � (n; nC).

Finally, the proof of expectational stability directly follows from the fact that the equilibrium is

�strict�(Lemma 3).

Appendix A4: Proofs of Section 2.2.4

Proof of Proposition 5. Proposition 4 already shows that a sincere equilibrium exists when

q (ajt) is su¢ ciently close to 1/2. It remains to prove existence of an �almost sincere� equilibrium
when q (ajt) is outside this range. Note that, in such an equilibrium, we must have:

G (AjtA; s0)�G (BjtA; s0) = q (ajtA; s0) [V paAC � vpaBC ] + q (bjtA; s0) [V pbAC � vpbBC ] � 0;(9)
G (AjtB ; s0)�G (BjtB ; s0) = q (ajtB ; s0) [vpaAC � V paBC ] + q (bjtB ; s0) [vpbAC � V pbBC ] � 0:(10)

These are the same conditions as:

q (ajtA; s0)
q (bjtA; s0)

[V paAC � vpaBC ] � vpbBC � V pbAC

q (ajtB ; s0)
q (bjtB ; s0)

[vpaAC � V paBC ] � V pbBC � vpbAC :

By 1 in the appendix, sincere voting implies paAC = pbBC > paBC = pbAC and p
a
AC=p

a
BC �!

n!1; nC=n=k

1. The above conditions then boil down to:

q (ajtA; s0)
q (bjtA; s0)

V � v and
q (ajtB ; s0)
q (bjtB ; s0)

v � V:

It is clear that the former condition gets violated for q (ajtA; s0) ! 0, and the latter gets violated

for q (ajtB ; s0) ! 1. It thus remains to show that, for any q(ajt;s0)
q(bjt;s0) su¢ ciently close to zero or to

in�nity, there is a strategy �0 in the neighborhood of �tA;s0 (A) = �tB ;s0 (B) = 1 that ensures that

the two conditions (9) and (10) hold strictly. Then, by a continuity argument, we will show that an
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expectationally stable exists between these two strategies.

Consider the case q (a) very close to 1. This implies that q(ajtB ;s0)q(bjtB ;s0) is very large. Now, consider a

strategy �0 �
�
�tA;s0 (A) = 1; �

0
tB ;s0 (B) = 1� "

	
, in which tA voters vote sincerely, and tB voters

strictly mix between A and B. Since �aA
�
�0
�
> �aB

�
�0
�
, condition (9) is still satis�ed. What about

(10)? It is only satis�ed if:

q (ajtB ; s0)
q (bjtB ; s0)

[v � V p
a
BC

paAC
]� V p

b
BC

paAC
+ v

pbAC
paAC

� 0: (11)

Holding nC=n = k constant, we have: limn!1
paBC
paAC

= 0 by 1 in the appendix. It is straightforward

to check that the same holds for pbAC
paAC

since �aA > nC=n > � bA (remember that we work under the

assumption that r (tAja) = r (tB jb)). It remains to check how pbBC
paAC

varies with n:

pbBC
paAC

=

 �
� bB
�k�1=n �

1� � bB
�1�k�1=n

(�aA)
k�1=n

(1� �aA)
1�k�1=n

!n �bB
k +

�bA
1�k

�aA
k +

�aB
1�k

!
n!1

 �
� bB
�k �

1� � bB
�1�k

(�aA)
k
(1� �aA)

1�k

!n �bB
k +

�bA
1�k

�aA
k +

�aB
1�k

: (12)

We now show that the �rst factor between parentheses must be strictly larger than 1, and hence

that limn!1
pbBC
paAC

=1. First, note that, for the strategy �0:

�aA > � bB > k > 1� k > 1� � bB > 1� �aA:

Second, note that the function x� (1� x)1�� is maximized in x = �. Thus, the fact that types tB
mix between A and B increases A�s vote share in comparison to sincere voting, which (slightly)

reduces � bB and brings it closer to k. This increases the numerator. By symmetry, the denominator

decreases. Since the �rst factor is equal to 1 under sincere voting, it must be strictly larger than 1

in �0. Thus, there exists �n large enough such that condition (11) must hold strictly for any n larger

than �n.

Having established this, we thus have that:

G (AjtA; s0)�G (BjtA; s0) > 0 both with sincere voting and at �0

G (AjtB ; s0)�G (BjtB ; s0) > 0 with sincere voting

G (AjtB ; s0)�G (BjtB ; s0) < 0 at �0.

Thus, there must exist �� such that ��tA;s0 (A) = 1; �
�
tB ;s0 (B) 2 (1� "; 1) which is a sincerely stable

equilibrium.

Proof of Proposition 6. Consider a distribution of types such that r (tAja) > r (tB jb) > nC=n.

Holding nC=n constant, 9�n such that the sincere voting equilibrium does not exist when n > �n.

Indeed, by (12), we have that, for �sincere � f�tA (A) ; �tB (B)g = f1; 1g ; limn!1
pbBC
p!AC

= 1 8!:
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From (5), this implies that G (AjtA)�G (BjtA) < 0:
Now, consider a second strategy pro�le �0 �

�
�0tA ; 1

	
with �0tA 2 (0; 1) such that �

a
A = nC=n;

which necessarily implies �aA < � bB . From Lemma 1 and the proof of Proposition 5, this implies

that limn!1
p!BC
paAC

= 0 8!; and hence that G (AjtA) � G (BjtA) > 0: This means that the value of

G (AjtA)�G (BjtA) changes sign when �tA (A) is increased from �0tA to 1. Since all pivot probabilities

are continuous in �tA , there must exist a value �
�
tA (A) 2

�
�0tA ; 1

�
such that voters with signal tA

are indi¤erent between playing A and B (note that this does not mean that this value is unique).

By (7) ; types-tB strictly prefers to play B in
�
��tA ; 1

	
; which proves that this is an equilibrium.

To prove that the three-candidate equilibrium f�tA (A) ; �sB (B)g =
�
��tA (A) ; 1

	
is expecta-

tionally stable, we just need to show that 9"1; "2 > 0 s.t.

G (AjtA) > G (BjtA) if �tA (A) 2 [��tA (A)� "1; �
�
tA (A));

G (AjtA) < G (BjtA) if �tA (A) 2 (��tA (A) ; �
�
tA (A) + "1];

G (AjtB) < G (BjtB) if �tB (B) 2 [1� "2; 1);

From our proof of existence, we know that there is at least one ��tA (A) 2
�
�0tA ; 1

�
such that

(i) G (AjtA) > G (BjtA) if �tA (A) 2 [��tA (A) � "); and (ii) G (AjtA) < G (BjtA) if �tA (A) 2
(��tA (A)+"]:We also know that G (AjtB) < G (BjtB) : Therefore, by continuity, it must be that 9"2
such that G (AjtB) < G (BjtB) if �tB (B) 2 [1 � "2; 1): This also proves that if the three-candidate

equilibrium is unique, then is must be expectationally stable.

Note that the above argument about expectational stability holds for any q (a) 2 (0; 1): Yet,
since it relies on the in�uence of pivot probabilities in both states of nature, it ceases to hold when

q (a) 2 f0; 1g: Hence, Aggregate Uncertainty is both a necessary and a su¢ cient condition for the
expectational stability of the equilibrium

�
��tA ; 1

	
:

Appendix A5: Large Elections, Additional Results

Proposition 7 Under aggregate certainty, conditional on observing signal s! 2 fsa; sbg, if
jr (tAj!)� 1=2j > � (n; nC), then there exists a Duverger�s Hypothesis equilibrium in which

voters with types-tA play a non-degenerate mixed strategy: �tA (A) 2 (0; 1) and �tB (B) = 1.
This equilibrium is never expectationally stable.

Proof. Consider a distribution of types such that r (tAja) � r (tB ja) > � (n; nC), in which case

sincere voting is not an equilibrium. That is, there exists a type �t 2 ftA; tBg such that all the voters
of type �t strictly prefer to deviate from a strategy pro�le �sincere � f�tA (A) ; �tB (B)g = f1; 1g : First,
we prove that types-tB are the voters who prefer to deviate, i.e. �sincere ) G (AjtB)�G (BjtB) > 0
for both types. First, note that from r (tAja) � r (tB ja) > � (n; nC) ; we have that �aA > �aB for
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�sincere : Therefore, from nC > n
2 ; we have

paAC
paBC

=

�
�aA
�aB

�2nC�n �aA (n� nC) + �aBnC
�aAnC + �

a
B (n� nC)

> 1:

Indeed, for �aA = �aB ; the ratio is equal to 1, and the derivative of this ratio with respect to
�aA
�aB

is

proportional to:

nC (n� nC)
�
1� �aA

�aB

�2
+ n

�aA
�aB

(n� 1) ;

which is strictly positive. The ratio paAC
paBC

is thus strictly increasing in the share �aA.

Now, consider another strategy pro�le �00 � f"; 1g, with "! 0 (and hence �tA (B)! 1). From

Proposition 1, this strategy pro�le implies G (Ajt)�G (Bjt) < 0 for both types. By the continuity
of the payo¤s with respect to �tA (A) ; there must therefore exist a value �

��
tA (A) 2 (0; 1) such that

G (AjtA) � G (BjtA) = 0: It is easy to prove that for the strategy pro�le f�tA (A) ; �sB (B)g =�
���tA (A) ; 1

	
; a voter with types-tB strictly prefers to play B, i.e. G (AjtB)�G (BjtB) < 0. Hence,

that strategy pro�le is a Duverger�s Hypothesis equilibrium.

To prove that the equilibrium is not expectationally stable, it is enough to show that for any

" > 0, and �t (A) 2 [��t (A)� "); we have G (AjtA) < G (BjtA). Note that, for such �t (A) ; we have
that �aA (�t (A)) < �aA (�

�
t (A)) : Therefore, the ratio

paAC
paBC

is smaller than in equilibrium (see above).

This concludes the proof.

Appendix A6: Instructions

Welcome and thank you for taking part in this experiment. Please remain quiet and switch
o¤ your mobile phone. It is important that you do not talk to other participants during the
entire experiment. Please read these instructions very carefully; the better you understand
the instructions the more money you will be able to earn. If you have further questions after
reading the instructions, please raise your hand out of your cubicle. We will then approach
you in order to answer your questions personally. Please do not ask aloud.

This experiment consists of 80 rounds. The rules are the same for all participants and
for all rounds. At the beginning of the experiment, you will be randomly assigned to a
group of 12 (including yourself). You will belong to the same group throughout the whole
experiment. You will only interact with the participants in your group. Your earnings will
depend partly on your decisions, partly on the decisions of the other participants in your
group and partly on chance.

The Jar. There are two jars: the blue jar and the red jar. The blue jar contains 6 blue
balls and 3 red balls. The red jar contains 3 blue balls and 6 red balls.
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Blue Jar                                    Red Jar

At the beginning of each round, one of the two jars will be randomly selected. The color
of the jar may thus change from one round to the next. In each round, each jar is equally
likely to be selected, i.e., each jar is selected with a probability of 50%.

[U] You will not be told which jar has been chosen before making your decision.

[C] You will be told which jar has been chosen before making your decision.

The Ball. After a jar is selected for your group, every participant in your group
(including yourself) is going to see the color of one ball randomly drawn from that jar.
Since you are 12 in your group, the computer performs this random draw 12 times. Each
ball is equally likely to be drawn. That is, independently of the balls received by the other
members of the group; you have a chance of two thirds of receiving a blue ball if the selected
jar is blue. And if the selected jar is red, you and every other member of your group have
a chance of two thirds of receiving a red ball.

Importantly, you will only see the color of your own ball, and not the color of the ball
received by the other members of your group.

Your decision. Once you have seen the color of one of the balls, you can make your
decision. You will have to vote for Blue, Red or Gray. You can vote for one of the colors
by clicking on it. After making your decision, please press the �OK�key to con�rm.

Group Decision. Once all participants have made their decision, the votes of all 12
participants will be added up. On top of that, the computer will add 7 votes for Gray. The
group decision will depend on the total number of votes that each color receives:

� If one color has strictly more votes than other colors, this color will be the group
decision.

� If there is a tie between several colors with the most votes, one of the colors with the
most votes will be selected randomly. Among the colors with the most votes, each color
will have the same probability of being chosen to be the group decision.

Payo¤ in Each Round. Your payo¤ depends on the group decision and on the color
of your ball. Your payo¤ is indicated in the following table:
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Group Decision
Blue Red Gray

Your Blue 200 110 20
Ball Red 110 200 20

The columns (indicated on the top part of the table) indicate the group decision, i.e.
which color got elected. The row (indicated on the left part of the table) indicates the color
of your ball.

� If your ball is Blue and the group decision is Blue, you get 200 cents.

� Blue Red, you get 110 cents.

� Blue Gray, you get 20 cents.

� Red Blue, you get 110 cents.

� Red Red, you get 200 cents.

� Red Gray, you get 20 cents.

To summarize, if the color of the group decision matches the color of your ball, your
payo¤ is 200. If group decision is either blue or red, but does not match the color of your
selected ball, your payo¤ is 110. Finally, if the color of the group decision is Gray, your
payo¤ is 20 independently of the color of your ball.

Information at the end of each Round. Once you and all the other participants
have made and con�rmed your choices, the round will be over. At the end of each round,
you will receive the following information:

� Total number of votes for Blue

� Total number of votes for Red

� Total number of votes for Gray (including the 7 votes added by the computer)

� What is the group decision (which color got elected)

� The color of the selected jar

� Your ball

� Your payo¤

Final Earnings. At the end of the experiment, the computer will randomly select 8
rounds and you will earn the payo¤s you obtained in these rounds. Each of the 80 rounds
has the same chance of being selected.

Control Questions. Before the experiment, you will have to answer some control
questions in the computer terminal. Click OK after you have answer each question. Once
you and all the other participants have answered all the questions, the experiment will start.
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