Status Anxiety Makes Women Underperform

Arthur Schram, Jordi Brandts, Klarita Gërxhani

March 9, 2015

Abstract

Competition typically involves two main dimensions, a rivalry for resources and the ranking of relative performances. If socially recognized, the latter yields a ranking in terms of social status. The rivalry of resources resulting from interacting under a competitive incentive scheme has been found to negatively affect women’s performance relative to that of men. However, little is known about gender differences in the performance consequences of status ranking. We find that in anticipation of ranking women perform more poorly than men while there is no performance difference without status ranking. This is important because recent studies argue that women may be underrepresented in top positions because they shy away from—and sometimes underperform under—competition. It has been argued that adapting the institutions under which competition takes place could improve women’s position. Our results suggest that increased participation in competitive environments could harm women’s labor market success along a different channel. We thus highlight an overlooked impediment for workplace promotion of women that may have major implications for the design of labor market competitions.

Acknowledgments

Much of the work reported in this paper was done while the second and third authors where visiting the University of Pompeu Fabra and the Institut d’Anàlisi Econòmica in Barcelona. We are grateful to both institutes for their hospitality. We also thank the Research Priority Area Behavioral Economics of the University of Amsterdam, the Spanish Ministry of Economics and Competitiveness (Grant: ECO2011-29847-C02-01) and the Generalitat de Catalunya (Grant: 2009 SGR 820) for financial support, Veronica Benet-Martinez for providing us access to the DCPIS laboratory of the Universitat Pompeu Fabra in Barcelona, and Elia Soler Pastor and Eva Maciocco for help in organizing the experiments. We are grateful to seminar participants at University Ca’ Foscari in Venice, University of Padua, and the University of Amsterdam, and Jos Bosch, Thomas Buser, Marii Paskov, Christina Rott, Aljaz Ule, and Matthijs van Veelen for comments at various stages of this project.

Authors

<table>
<thead>
<tr>
<th>Arthur Schram</th>
<th>Jordi Brandts</th>
<th>Klarita Gërxhani</th>
</tr>
</thead>
<tbody>
<tr>
<td>(corresponding author)</td>
<td>Institut d’Anàlisi Econòmica (CSIC) and Barcelona GSE</td>
<td>Department of Sociology</td>
</tr>
<tr>
<td>Amsterdam School of Economics</td>
<td>Campus UAB</td>
<td>Amsterdam Centre for Inequality Studies</td>
</tr>
<tr>
<td>Roetersstraat 11</td>
<td>08193 Bellaterra (Barcelona)</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>1018 WB Amsterdam</td>
<td>Spain</td>
<td>Nieuwe Achtergracht 166</td>
</tr>
<tr>
<td>The Netherlands</td>
<td></td>
<td>1018WV Amsterdam</td>
</tr>
<tr>
<td>phone +31-20-525.4293</td>
<td>phone +34-93-580.6612</td>
<td>phone +31-20-525.4113</td>
</tr>
<tr>
<td>fax +31-20-525.5283</td>
<td>fax +34-93-580.1452</td>
<td>fax +31-20-525.3010</td>
</tr>
<tr>
<td>Schram@uva.nl</td>
<td>Jordi.Brandts@uab.es</td>
<td>k.gerxhani@uva.nl</td>
</tr>
</tbody>
</table>
1. Introduction

Gender differences in behavior under competitive pressures on the one hand, and in attitudes towards competition on the other, have been recognized for over a decade now (Gneezy et al. 2003, Niederle and Vesterlund 2007, Balafoutas and Sutter 2012; Wozniak et al. 2014; Brandts et al. in press). The existing literature has predominantly focused on one particular dimension of competition, which is a rivalry for resources (Stigler 1987). However, competition involves another dimension that seems to have escaped scholarly attention. This dimension corresponds to the fact that competition typically entails a ranking of relative performance, since high-ranking performance determines the winner(s) in competitive environments. Since a performance ranking, if socially recognized, yields a ranking in terms of social status (Eckel et al. 2001), competition creates a status ranking amongst the competitors. For example, competition for highly regarded jobs involves a rivalry for resources where some people get jobs and others do not; but it also implies applicants being ranked relative to others with the successful applicant obtaining higher status than those who did not get the job. Little is known about the consequences for gender inequality of the status-ranking dimension of competition. This issue is what this paper addresses.

It is well-documented that attitudes towards status differ across gender, with men usually found to attribute more importance to status than women (Frank 1999; Carlsson et al. 2009; Mujcic and Frijters 2013), though the reverse has also been reported (Johansson-Stenman et al, 2002; Alpizar et al. 2005). Here, we do not focus on the importance attributed to status per se. Instead, we address the complementary matter of gender differences in performance given that one knows that a performance comparison will take place that will reflect one’s
status ranking. The anticipation of such a ranking has been shown to affect performance (Botton 2004; Wilkinson and Picket 2010), but gender differences in this effect have not been addressed. What we do know is that, when men and women are ‘forced’ to compete for resources and the ranking of performance is not made salient (i.e., the status dimension of competition is not obvious), then performance differs across gender for some environments but not for others (Niederle and Vesterlund 2011). This leaves open the question whether the performance differs between men and women when the status-ranking dimension has been made salient. We use laboratory experiments to isolate the effects of status ranking. Our design makes it possible to eliminate the rivalry dimension of competition and to focus on the dimension we are interested in.

Our experimental design has two treatments, differing only in the second of three parts. For both treatments, part 1 consists of a real-effort task where the monetary payoff is based purely on the individual score, so that there is no competitive aspect to the incentive scheme. One group does the task and skips part 2. Their performance serves as a benchmark of isolated play to compare with that of those in the other group. Those in this second group have to report in part 2 their scores to a peer seated in a separate office, who does not know what task was undertaken. We distinguish between two treatments in a between-subject design. In the ‘Status Ranking’ treatment (SR), each player individually and privately reports to the same peer and (truthfully) reads aloud his/her score as well as the ranking among the other participants in that second group. This allows the peer to compare performances. In the ‘Conformity’ treatment (CF), each player reports to a different peer and (truthfully) reads aloud the score, but not the rank. This treatment distinction uses the fact that
status is inherently positional to isolate the mere effects of having to report one's result to a stranger from the effects of social status ranking, i.e., being compared to others by a stranger (Heffetz and Frank 2008). Finally, in part 3, subjects play dictator games (Hoffman et al. 1994), which allows us to investigate the notion that high status yields a feeling of ‘entitlement’ to resources in bargaining environments (Eckel et al. 2001).

Our results show markedly distinct outcomes for men and women. In isolated play and under conformity (CF), gender differences in performance are small and insignificant. In contrast, men exert much more effort than women and perform much better in status ranking (SR). When women a priori know that a social ranking of their performance will take place, they underperform, while the prospect of social ranking makes men do better. We can unequivocally attribute this performance difference to the social ranking, because no gender difference is observed in conformity, where subjects report their score to a stranger who cannot compare this score to others'.

The remainder of this paper is organized as follows. The following section briefly reviews the literatures on gender differences in preferences for competition and stereotype threat and relates them to this study. Section 3 presents our experimental design and procedures, and section 4 describes our results. A concluding discussion is offered in section 5.

2. State of the Art

There is by now an extensive literature on differences in behavior in relation to competition (for overviews, see Croson and Gneezy 2009 or Niederle and Vesterlund 2011). The focus has been both on performance differences when
men and women compete and on gender differences in the willingness to enter a competitive environment. In this literature, the focal point is on the rivalry-of-resources aspect of competition. A competitive environment typically involves one or a few of the best performers obtaining a monetary prize.

Regarding gender differences in behavior under competitive pressures, a first influential study (Gneezy et al. 2003) shows for a maze-solving task that when forced to compete for resources women do not perform better than in a non-competitive environment where earnings are based solely on individual performance. In contrast, such competition strongly improves performance by men. This result is only observed when men and women participate in a mixed-gender competition, however, and is largely driven by women underperforming when they compete with men, in the sense that they do not improve performance as much as when they compete with women. A similar effect is observed when 10-year olds compete in running contests (Gneezy and Rustichini 2004). Subsequent research has shown that these performance effects depend on the task under consideration. When the task the competition is based on is related to language skills, women do not perform worse than men (Günther et al. 2010; Shurchkov 2012).

All in all, the current state of the art is that competition for resources can negatively affect women’s performance for some tasks. To the best of our knowledge, nothing is yet known about how the status-ranking dimension of competition affects men and women.

With respect to the issue of gender differences in attitudes towards competition, the seminal work by Niederle and Vesterlund (2007) establishes that women have a lower willingness to enter competition than do men. Partly,
this is attributable to male overconfidence, but also to women having a lower preference for entering competitive environments. The vast majority of subsequent research has confirmed this conclusion (see Niederle and Vesterlund 2011, for references).

The first studies linking experimental measures of competitiveness to actual education and labor market outcomes have only recently started to appear. These show that (differences in) competitiveness help explain why women sort out of jobs with competitive compensation regimes (Flory et al. 2014); predict whether Chinese students choose to participate in a competitive entry exam for prestigious universities (Zhang 2013); predict future salary expectations of American college students (Reuben et al. 2013); and can partially explain gender differences in academic career choices of Dutch high school students (Buser et al. 2014).

Various measures have been suggested to address the gender gap in entry into competition. These include quota (Balafoutas and Sutter 2012; Niederle et al. 2013), the provision of feedback on relative performance (Wozniak et al. 2014), reduced time pressure (Shurchkov 2012), participation in teams (Dargnies 2012), and advice (Brandts et al. 2014). Though all of these measures may be useful in inducing women to enter into competition, none is informative as to what to expect with respect to the gender differences in response to the status ranking implied by competition. This is because these studies do not analyze the effects of the status-ranking dimension of competition.

An important aspect of status ranking is the possible anxiety about an anticipated comparison. This anxiety can be caused by ‘social evaluative threats’, i.e., situations where the social self in humans is endangered. Such threats give
rise to large levels of individual cortisol responses due to a fear of failure in the eyes of others (Dickerson and Kemeny 2004). There is, however, no evidence that these physiological responses are gender related. This, and the lack of previous studies on gender-specific performance effects of (social) status anxiety are somewhat surprising, because there is ample evidence of gender differences in the effects of ‘stereotype threat’, i.e., cultural beliefs about gender-specific performance. This threat is considered to be an important cause of gender differences in self-assessment of ability and career aspirations (with men scoring higher in both; Correl 2004, Thébaud 2010). Note that this may explain the findings reported in Günther et al. (2010) and Shurchkov (2012). i.e., why women underperform in tasks (like solving mazes) that are perceived to be ‘male tasks’ and not so in tasks (i.e. linguistic) that do not have cultural beliefs attributing them to one gender or the other.

Stereotype threat may lead to evaluation anxiety when conducting tasks that are considered to be negatively associated with one’s gender (Steele 1997). Simply knowing that a negative gender stereotype exists may be sufficient to cause anxiety (Goffman 1963, Howard and Hammond 1985, Steele and Aronson 1995), which inhibits performance (Sarason 1972, Hunt and Hillery 1973, Michaels et al. 1982, Wigfield and Eccles 1989). In math tests, priming gender stereotypes affects women’s performance, but not men’s (O’Brien and Candall 2003). Hence, stereotype threat could conceivably cause gender differences, both in the performance under competition for resources and in the effects of anticipated status ranking. In our study, we exclude this possibility. Though men and women perform a math task under induced anxiety pressures, we do not prime stereotype threat. Furthermore, our design allows us to isolate any effects
of pre-existing stereotype threats related to gender. The results indicate no evidence of such effects.

3. Experimental Procedures and Design

The experiment was run at the laboratory of the Department of Political and Social Sciences (DCPIS) of the Universitat Pompeu Fabra in Barcelona. We organized six sessions with human participants in April and May 2014 and three additional sessions in October 2014. As explained below, the fall sessions were designed after having seen the results from the spring sessions. There were three sessions with 13 and six with 18 participants, for a total of 147; 108 of these were ‘active’ participants (A- and B-players; see below). Participants were recruited on a voluntary basis from the DCPIS subject pool using the ORSEE recruitment software (Greiner 2004). If more volunteers showed up than needed for the session, participants were randomly selected and the remainder was sent off with a €7 show-up fee.

The experiment was partly computerized.1 Instructions were handed out on paper and are reproduced in Appendix A. The experiment consists of three parts. In part 1 (computerized), participants undertake an individual task. In part 2 (not computerized), some active subjects are required to report their result to inactive (C-)players. Part 3 (computerized) involves pairs of subjects playing dictator games. Instructions for parts 2 and 3 were distributed after completion of the previous part.

1 The experimental software was developed in Delphi at the Center for Research in Experimental Economics and political Decision making (CREED) by CREED programmer Jos Theelen. It is available upon request.
Sessions lasted approximately 50 minutes. At the end of each session, participants were paid their earnings (which were contingent on their decisions in parts 1 and 3) in private. For active players, average earnings including the €7 show-up fee were €23.42 (€24.23) excluding two outliers. Inactive (C-) players received a €20 participation fee.

3.1. Player Types

Before entering the laboratory, participants are randomly allocated to the three types of players, denoted by A, B and C. Only types A and B enter the laboratory and do the tasks described below. C-players are taken to separate rooms. In every session there are six A-players and six B-players. Depending on the treatment (see below), there are either six or one C-player.

3.2. Task

Part 1 is the same in all sessions and is taken from Weber and Schram (2014). Subjects are presented with a sequence of pairs of 10x10 matrices filled with two-digit numbers. These matrices appear at the bottom half of their computer monitor (Figure 1). For each pair of matrices each participant has to individually find the highest number in the left matrix and the highest number in the right matrix and to calculate the sum of these two numbers. This sum must be entered in the window at the center-top of the monitor. A correct answer yields one euro. We apply this piece-rate remuneration in all of our treatments. After a number has been entered, two new matrices appear, regardless of whether the sum was correct or not. The task continues for 15 minutes.
B-players are instructed about the summation task and perform the task without further interaction with other players. A-players are informed before the task that they will be required to report their performance to a C-player after completion. The A-player instructions also emphasize the importance of doing well in this task by mentioning that it has been shown to correlate positively with success in professional life. After finishing the instructions, each A-player is individually taken to a C-player and reads aloud a text stating that s/he will return after the task to report her/his score (i.e., performance). This is done to create the anticipation of having to later report to the C-player. The text used is

2 After preparing a first draft of the results obtained in the April/May sessions, some colleagues suggested that the fact that A-players but not B-players were given this information might cause a stereotype threat that affects gender differences observed amongst A-players. For this reason, in the October sessions we introduced a new group of players who did the summation text and were primed with this text. They did not participate in part 2 (hence, did not report to their peers). We observed no gender effects for these players (more details are available upon request). This means that the emphasis does not in itself induce stereotype threat.
given in Appendix A. The experimenters taking the A-players to see the corresponding C-player were always a man and a woman.

3.3. Treatments

We start with the distinction between two treatments that differ only in whether C-players are able to compare the performance of A-players. These are denoted as the ‘Status Ranking’ (SR) treatment and the ‘Conformity’ treatment (CF-NR, which denotes ‘Conformity-No Ranking’). In SR, there is only one C-player. In part 2 of the experiment, each A-player reports (one at a time) to this C-player and reads aloud the number of correct summations and her rank amongst the A-players (cf. the upper panel of Figure 2). It may be the case that simply reporting one’s score to a peer creates anxiety and affects behavior. To investigate this, we use the CF-NR treatment, where there are six C-players, each seated in a separate room. Each A-player reports (one at a time) to a different C-player and reads aloud the number of correct summations (see the lower panel of Figure 2). When reporting, A-players use printed texts provided by us (cf. Appendix A). B-players do not report to C-players. Their performance serves as a benchmark of isolated play.

When commenting on a previous draft of this paper, based on the April and May sessions (cf. fn. 2), some colleagues pointed out that there may be two differences between the CF-NR and SR treatments. The social rank in SR (and not in CF-NR) is not only known to others (i.e., C-players), but also to the A-players themselves. For this reason, we added a treatment in October 2014 where each A-player is informed about the own rank but knows that every A-player will
Fig. 2: Experimental Design.

Notes. A- and B-players individually do the summation task. Then A-players report privately to C-player(s) (indicated by arrows). Panel A shows the Status Ranking (SR) treatment where each A-player individually goes to the (same) C-player and reports her score and rank amongst A-players. Panel B shows the Conformity (CF) treatments where each A-player individually goes to her ‘own’ C-player and reports her score.

report to a distinct C-player, i.e., there was no social ranking. We denote this additional treatment by CF-PR (Conformity-Private Ranking).

In all treatments, C-player instructions inform them that they will be told the result of either one (CF-NR/CF-PR) or six (SR) participants. They are not informed about the task, but are told that high scores indicate better performance than low scores. A-players know that the C-players do not know the task. After all A-players have reported their scores, C-players are paid €20 and dismissed.
3.4. Dictator Games

In part 3, each A-player is paired with a B-player and each B-player is paired with a different A-player. This is illustrated in Figure 3. This pairing scheme aims at avoiding direct-reciprocity influences on participants’ behavior.

Figure 3: Dictator pairing

Notes. Arrows give pairings, pointing from the dictator to the recipient.

Each subject plays two dictator games, one as a dictator, once as a recipient. The dictator divides €10 between herself and the recipient to which she is paired. For example, A2 divides €10 between herself and B2 and B6 divides €10 between herself and A1. After all decisions have been made, a random draw determines whether dictator decisions by the A-players or the B-players are paid out.

3.5. Pilot

Before running the nine sessions of this experiment, we organized four pilot sessions (in March 2014). These differed from the final experiment on two accounts. First, subjects were given ten minutes instead of 15 minutes to do the summation task. We increased the amount of time given to create more leeway for differences in performance. Second, A-players did not go to the C-players between reading the instructions for part 1 and starting the summation task. We introduced this to make the reporting of their result more prominent.
4. Results

The results focus on gender differences in the various treatments. Because all tests reflect pairwise comparisons between independent samples of individuals, we use (two-sided) Mann-Whitney rank-sum tests (henceforth, MW) throughout the analysis. We start with considering the effects of status anxiety on effort and performance. Subsequently, we will consider the effects of status on subsequent choices in the dictator game. First, we investigate whether privately knowing one’s own status has an effect. Throughout, we measure effort by the number of attempts to solve summations in the task depicted in Figure 1. Performance is measured by the number of correct summations.

4.1. Private Ranking Information

To check whether knowing one’s relative position (without anyone else knowing) has an effect, we compare the CF-NR and CF-PR treatments. Figure 4 compares effort and performance across gender for these two treatments. It shows that both effort and performance rankings between men and women are switched when subjects know that they will privately be provided with information about their ranking amongst the A-players. Differences are small, however. None of the within-gender differences between CF-NR and CF-PR are statistically significant (MW; all $p > 0.13$). More importantly, there are no gender differences in effort or performance for either conformity treatment (MW; attempts: in CF-NR $p = 0.203$, in CF-PR $p = 0.315$; correct: in CF-NR $p = 0.237$, in CF-PR $p = 0.460$). For this reason, we pool the data for the CF-PR and CF-NR treatments from here onwards.
4.2. The Effects of Anticipated Status Ranking

When analyzing the data, we leave out two outliers in the SR treatment with more than 100 attempted summations (see Appendix B). Including them would further strengthen our results. Figure 5 presents the main results of this paper. It shows that women make insignificantly more attempts and have insignificantly more correct summations than men when they do the summation tasks in isolation (MW; $p = 0.359$ for attempts, $p = 0.588$ for correct summations). This is an important benchmark indicating that for this task our participants experience no unaccounted-for stereotype threat related to gender.

In the conformity treatments –i.e., when subjects know that they will report their result to a peer but also know that this C-player will not be able to compare this result to others’ performance– the differences between men and women are very small and statistically insignificant (MW; $p=0.863$ for attempts, $p=0.604$ for correct summations).
The most remarkable result is observed for the treatment where A-players report to C-players and know that these peers will be able to compare their performance to others (SR). Here, women make many fewer attempts and have many fewer correct summations than men and these gender differences are highly significant for both attempts (MW; \(p = 0.003 \)) and correct summations (MW; \(p = 0.005 \)). The observed gender difference in performance in SR is a direct consequence of the difference in effort because the fraction of attempted summations that is correct does not differ between men and women in SR (MW; \(p = 0.827 \)).

Figure 5 also shows a difference in the way men and women react to the introduction of conformity or status ranking. When introducing conformity in CF (having to report to others without being compared), women slightly increase their attempts but have fewer correct summations (compared to the isolated play of B-players). These differences are far from statistically significant,
however (MW; \(p = 0.909 \) for attempts, \(p = 0.225 \) for correct summations).\(^3\) Men (slightly) increase their number of attempts and have almost the same number of correct summations; again these effects are statistically insignificant (MW; \(p = 0.645 \) for attempts, \(p = 0.981 \) for correct summations).\(^4\)

When introducing social status ranking in SR, a comparison to the isolated B-players shows that women reduce their number of attempts and realize fewer correct summations, while men strongly increase attempts and correct summations. For women, both effects are (marginally) statistically significant (MW; \(p = 0.068 \) for attempts, \(p = 0.032 \) for correct summations). For men, only the effect on attempts is statistically significant (MW; \(p = 0.005 \) for attempts, \(p = 0.115 \) for correct summations). These results allow us to conclude that the gender difference we observe in a situation where (anticipated) status ranking may affect behavior is caused by women underperforming in pace and performance while status ranking makes men increase their pace without affecting their performance.

4.3. Effects of Status Ranking on Subsequent Behavior

Given the strong gender effects we observe when our subjects anticipate a status ranking, it is interesting to investigate whether these effects carry over to behavior after the social comparison has taken place. Of course, the answer to this question may depend on the actual rank obtained. To investigate this, Figure 6 shows per player type the average amount (out of €10) given by the dictator to the recipient.

\(^3\) A similar lack of significant effects holds when separately considering the CF treatments (in CF-NR: \(p=0.270, p=0.240 \), respectively; in CF-PR: \(p=0.358, p=0.483 \)).

\(^4\) Similarly, there are no significant effects when considering the CF treatments separately (in CF-NR: \(p=0.272, p=0.351 \), respectively; in CF-PR: \(p=0.778, p=0.310 \)).
Figure 6: Dictator Allocations

Notes. Bars indicate the amount in euros given by the dictator to the recipient she was paired to. Ranked 1,2,3 (4,5,6) indicates that the player was amongst the top 3 (lower 3) in her group in terms of number of correct summations. Recall that only type A-SR players knew their rank. The numbers of observations are low for some categories. There are no men ranked 4,5,6 in type A-SR and only three men ranked 4,5,6 in type A-CF. There are only two women ranked 1,2,3 in type A-SR and only four women ranked 1,2,3 in type A-CF. All other (eight) categories have at least five observations.

There are three pairwise comparisons between types. Pooling data for men and women, we test for differences in dictator allocations for all subjects, and separately for those ranked top-3 and lowest-3. Of the nine pairwise comparisons between types that this gives, none is statistically significant (all $p > 0.329$). Similarly, no significant pairwise differences are observed for women (all $p > 0.403$) or men (all $p > 0.354$).\(^5\) Apparently, for the pooled data, social status ranking does not affect subsequent behavior in the dictator game, irrespective of gender and of whether one has obtained high or low status.

For our purposes, it is more interesting to check in the various treatments for gender differences in the dictator allocations. We observe no such effects. For type B-players (isolated play), the three situations in which men and women can

\(^5\) For men, there are only seven pairwise comparisons because there are no observations in ranks 4,5,6 in SR.
be compared (ranked in top 3, ranked on lower 3, and pooled across all ranks) give all $p > 0.130$). For the conformity treatments (CF), the three comparisons between men and women give all $p > 0.173$. The treatment with social ranking (SR) yields for the two comparisons $p > 0.267$ (there is no comparison for the case with top ranks).

Unrelated to status ranking, Figure 6 does appear to show one gender effect in dictator giving. This is that men seem to give less as a dictator than women do if their scores are in the top-3. This difference is statistically significant ($\text{MW}, p = 0.020$). No such gender effect is observed for those with low scores ($\text{MW}; p = 0.574$). This suggests that men who do relatively well in the summation task (with or without explicitly being told so) feel entitled to keep more of the €10 dictator allocation to themselves than women in the same situation. In a similar vein, men who scored in the top-3 give significantly less than men in the lowest-3 ($\text{MW}; p = 0.013$). No significant difference between women with high and low scores is observed ($\text{MW}; p = 0.478$). This gender difference in the effect of entitlement is an interesting addition to the general finding that entitlement reduces offers in a dictator game (Hoffman et al. 1994). It suggests that the entitlement effect holds only for men. However, it does not support the notion that high status leads to entitlement effects in subsequent bargaining (Eckel et al. 2001) because we do not observe differences across status treatments. A cautious conclusion is that though the anticipation of status ranking affects pace and performance, experienced status ranking has no effect on future allocations.
5. Conclusions

Our experimental study does not involve rivalry for resources, but it does involve comparison of performance in one treatment. This yields a ‘competition’ for social status. Because there is no competition for resources the literature on competition would predict that we observe no gender effects. Instead, we find that women lower their pace and perform worse than men under status anxiety pressures. This suggests that social status anxiety may be an important element in observed gender differences in real-world competitive environments. Previous studies have shown that women tend to ‘opt out’ of competitive situations (Niederle et al. 2007). Our results imply that finding ways to make women ‘opt in’ may not suffice to bridge the gender gap.

Though the anxiety of being compared to others is particularly disadvantageous to women, the aggregate effect across men and women may not be negative. In our experiments, total productivity (measured by the total number of correct summations) is on average 24.2 both for players acting in isolation and for players anticipating status ranking (it is 22.5 for players in conformity). This suggests that social status anxiety has negative effects on gender equality without affecting economic efficiency. Efficiency and equity could both be enhanced if one could diminish the effect of status anxiety on women while maintaining the stimulating effect that status ranking has on men.

A tentative interpretation of our findings is that either women choke under status pressure, or that status ranking with peers demotivates women. Given the increasing labor participation of women, such gender differences and the underlying factor of social status anxiety need to be addressed. The obvious way is to minimize for women the performance comparison with others in working
environments. This can be done via affirmative action policies (Balafoutas and Sutter 2012), or fixed promotion standards based on individual performance without comparison to peers. An example of this practice is that in many North American universities, tenure decisions are not made in direct comparison to other candidates who are simultaneously up for tenure, but to a set of standards expected for a tenured position. Our results suggest that this procedure will lead to better performance by women than in universities where they have to apply and compete for vacant tenure positions (as is often the case in Europe).

References

Online Appendices

A. Written Instructions and Computer Screen Captures for Experiment
B. Summary Statistics
C. Raw Data
Appendices

Appendix A. Written Instructions and Computer Screen Captures for Experiment

I. Conformity

A-Players

Part 1
Welcome to this experiment.

You will receive 5 euro for your participation in the experiment. Depending on your decisions and the decisions of other participants in today’s experiment, you can earn money. You will be paid privately at the end of the experiment. In the experiment you will remain anonymous. Your decisions will only be linked to your station id and not to your name in any way. The experiment will take approximately 1 hour.

The participants in this experiment have been randomly divided into three groups. Six of you are of type A, six are of type B and six are of type C. The participants of type A and of type B are in this room, while the six participants of type C are each in one of six other rooms.

You are of type A.

The experiment is divided into three stages. You will receive instructions for each stage when it starts. We guarantee that everything we tell you in these instructions will proceed precisely as described. If you have any doubts about whether we are acting in the way described in the instructions, we will be happy to show you at the end of the experiment that this is the case.

We now start with stage 1.

In stage 1 the participants of type A and of type B will all independently perform a task during 15 minutes.
This is an important task that is often used to measure people’s talents. Many scientific studies have found that people who do well in a task like this are more successful in professional life than people who do less well. You will not be told, however, what is typically a good or a bad score for this task.

The task is as follows. You will see two matrices on the computer screen. Each matrix has 10 rows and 10 columns and is filled with randomly generated numbers. Your job is to find the largest number in each of the matrices and then to add them up. You are not allowed to use calculators, but you can use the paper and pencil that you have found on your desk.

After entering a sum the computer will tell you whether it is correct or incorrect (please note that the time will continue to run while you see this result). Subsequently, irrespective of whether your answer is correct or incorrect, a new pair of matrices will appear. This means that for each pair, you have only one attempt to provide the correct answer. However, there will always be new matrices as long as you are within the 15 minutes limit.

For each correct sum you will receive 1 euro and for each incorrect sum you will receive 0 euros. The total number of euros you have gained will be visible on the screen at the end of this stage.

Remember that studies have found that people who do well in a task like this are more successful in professional life. You will not know how people typically perform in this task. Nor will you know how other participants scored in the task today.
After this stage, you will be asked to inform one of the participants of type C about your score.

You will have to go to a separate room where one of these participants will be waiting. This participant does not know what task you did and what the score means. He or she has only been told that a higher score is thought to lead to a more successful professional life. Importantly, this participant will only know your score. He or she will not be informed about any other participant’s score.

We would like you to see the type C participant that you will present your score to. For this reason, each of you will now first leave the room and read aloud a text that will be given to you. Note that each of you will be going to a different type C participant.

Part 2
This brings us to the end of the first stage of the experiment.

Now you will be asked to inform a participant of type C about your score. This is the same participant C that you saw before. Recall that every type A player is visiting a different participant.

For this purpose, each participant of type A will receive from the experimenters a closed envelop with his/her score. Then each participant of type A will be accompanied by the experimenters to one of the six rooms in which a participant of type C is waiting. Each A participant will go to a different room. There, each A participant will open the envelop and read aloud the text to the C participant. Then all A participants will return to their desks. Participants of type B will remain seated during this process and are not informed about what the B participants will do.

Remember that the C participant does not know what task you did and what the score means. He or she has only been told that a higher score is thought to lead to a more successful professional life. Importantly, this participant will only know your score. He or she will not be informed about any other participant’s score, nor does he or she know what a typical score on this task would be.

Part 3
We will now continue with stage 3 of the experiment.
In this stage, each A will be paired with one of the B players and each B player will be paired with one of the A players in the same room. Each A player will have to decide how to divide 10 euro between him/herself and the B player he/she is paired with. Similarly, each B player will have to decide how to divide 10 euro between him/herself and the A player he/she is paired with. The B player with whom a particular A player decides to divide the 10 euro is not the same person as the B player who decides how to divide 10 euro with the particular A player.

Once all A players and all B players will have made their decisions the computer will randomly determine whether the decisions of the A player or those of the B players will be used for payment.

B-Players

Part 1
Welcome to this experiment.

You will receive 5 euro for your participation in the experiment. Depending on your decisions and the decisions of other participants in today’s experiment, you can earn money. You will be paid privately at the end of the experiment. In the experiment you will remain anonymous. Your decisions will only be linked to your station id and not to your name in any way. The experiment will take approximately 1 hour.

The participants in this experiment have been randomly divided into three groups. Six of you are of type A, six are of type B and six are of type C. The participants of type A and of type B are in this room, while the six participants of type C are each in one of six other rooms.

You are of type B.
The experiment is divided into three stages. You will receive instructions for each stage when it starts. We guarantee that everything we tell you in these instructions will proceed precisely as described. If you have any doubts about whether we are acting in the way described in the instructions, we will be happy to show you at the end of the experiment that this is the case.

We now start with stage 1.

In stage 1 the participants of type A and of type B will all independently perform a task during 15 minutes.

The task is as follows. You will see two matrices on the computer screen. Each matrix has 10 rows and 10 columns and is filled with randomly generated numbers. Your job is to find the largest number in each of the matrices and then to add them up. You are not allowed to use calculators, but you can use the paper and pencil that you have found on your desk.

After entering a sum the computer will tell you whether it is correct or incorrect (please note that the time will continue to run while you see this result). Subsequently, irrespective of whether your answer is correct or incorrect, a new pair of matrices will appear. This means that for each pair, you have only one attempt to provide the correct answer. However, there will always be new matrices as long as you are within the 15 minutes limit.

For each correct sum you will receive 1 euro and for each incorrect sum you will receive 0 euros. The total number of euros you have gained will be visible on the screen at the end of this stage.

The type A players will now leave the room, each for a few minutes. Please remain seated quietly until this has been completed.

Part 2
This brings us to the end of the first stage of the experiment.
In this stage all B participants are required to remain quietly seated at their desks and wait till the beginning of stage 3.

Part 3
We will now continue with stage 3 of the experiment.

In this stage, each A will be paired with one of the B players and each B player will be paired with one of the A players in the same room. Each A player will have to decide how to divide 10 euro between him/herself and the B player he/she is paired with. Similarly, each B player will have to decide how to divide 10 euro between him/herself and the A player he/she is paired with. The B player with whom a particular A player decides to divide the 10 euro is not the same person as the B player who decides how to divide 10 euro with the particular A player.

Once all A players and all B players will have made their decisions the computer will randomly determine whether the decisions of the A player or those of the B players will be used for payment.

C-players
Welcome to this experiment.

Your role in today’s experiment is a passive one. You will not be asked to make any decisions.

Your only task is to hear the results of a task performed by one of the other participants. You will not be informed about the content of this task. All you need to know is that it is an important task that is often used to measure people’s talents. Many scientific studies have found that people who have a high score in a task like this are more successful in professional life than people who have a low score. You will not be told, however, what is typically a good or a bad score for this task.
Each of you will be seated in a separate room. One of us will take you there, shortly. While you are waiting for this, feel free to read anything you like, or to browse your phone. After you have been taken to a separate room, and before the other participants have started their task one of them will be taken to you.
He or she will read a text to you and return to the laboratory. After all the other participants have completed their tasks, the same participant will again be taken to you. He or she will read to you his or her score.

You may not speak or interact with the other participant in any way. After he or she has left, you will be taken back to this room.

For your role in today's experiment, you will receive 15 euros on top of the 5 euros show-up fee. You will be paid and dismissed after the participants have told each of you their scores.

Finally, please treat the room you will be in with respect. You are a guest here, so please do not touch anything that is not yours.

Texts read to C-players by A-players

Before the summation task:

Your station id is
You must go to room #

Please read the following text to the participant waiting for you in that room:

“I will go back and do a task. After I have done so, I will come back and tell you my score.”

After the summation task:

Your station id is
You must go to room #

Please read the following text to the participant waiting for you in that room:

“My score on the task I did was”

II. Status Ranking

A-Players

Part 1

Welcome to this experiment.

You will receive 5 euro for your participation in the experiment. Depending on your decisions and the decisions of other participants in today's experiment, you can earn money. You will be paid privately at the end of the experiment. In the experiment you will remain anonymous. Your decisions will only be linked to your station id and not to your name in any way. The experiment will take approximately 1 hour.

The participants in this experiment have been randomly divided into three groups. Six of you are of type A, six are of type B and one is of type C. The participants of type A and of type B are in this room, while the participant of type C is in another room.

You are of type A.
The experiment is divided into three stages. You will receive instructions for each stage when it starts. We guarantee that everything we tell you in these instructions will proceed precisely as described. If you have any doubts about whether we are acting in the way described in the instructions, we will be happy to show you at the end of the experiment that this is the case.

We start with stage 1.

In stage 1 the participants of type A and of type B will all independently perform a task during 15 minutes.

This is an important task that is often used to measure people's talents. Many scientific studies have found that people who do well in a task like this are more successful in professional life than people who do less well. You will not be told, however, what is typically a good or a bad score for this task.

The task is as follows. You will see two matrices on the computer screen. Each matrix has 10 rows and 10 columns and is filled with randomly generated numbers. Your job is to find the largest number in each of the matrices and then to add them up. You are not allowed to use calculators, but you can use the paper and pencil that you have found on your desk.

After entering a sum the computer will tell you whether it is correct or incorrect (please note that the time will continue to run while you see this result). Subsequently, irrespective of whether your answer is correct or incorrect, a new pair of matrices will appear. This means that for each pair, you have only one attempt to provide the correct answer. However, there will always be new matrices as long as you are within the 15 minutes limit.

For each correct sum you will receive 1 euro and for each incorrect sum you will receive 0 euros. The total number of euros you have gained will be visible on the screen at the end of this stage.

Remember that studies have found that people who do well in a task like this are more successful in professional life. You will not know how people typically perform in this task. However, you will be told, how your performance relates to the other 5 participants of type A in this experiment, today.

After this stage, you will be asked to inform the participant of type C about your score and how this ranks amongst the A participants.

You will have to go one at a time to a separate room where this C participant will be waiting. This participant does not know what task you did and what the score means. He or she has only been told that a higher score is thought to lead to a more successful professional life. Importantly, this participant will hear your score and how it ranks to the other A participants.

We would like you to see the type C participant that you will present your score to. For this reason, each of you will now first leave the room and read aloud a text that will be given to you. Note that each of you will be going to the same type C participant.

Part 2
This brings us to the end of the first stage of the experiment.

Now you will be asked to inform the participant of type C about your score. This is the same participant C that you visited before. Recall that every type A player is visiting the same participant.

For this purpose, each participant of type will receive from the experimenters a closed envelop with his/her score. Then each participant of type A will be accompanied by the experimenters to the room where the C participant is waiting. There, each A player will open the envelop and read aloud the text to the C participant. Then all A players will return to their desks. Participants of type B will remain seated during this process and are not informed about what the B participants will do.

Remember that the C participant does not know what task you did and what the score means. He or she has only been told that a higher score is thought to lead to a more successful professional life. Importantly, this participant will know your score and how it ranks to the other A participants.
Part 3
We will now continue with stage 3 of the experiment.

In this stage, each A will be paired with one of the B players and each B player will be paired with one of the A players in the same room. Each A player will have to decide how to divide 10 euro between him/herself and the B player he/she is paired with. Similarly, each B player will have to decide how to divide 10 euro between him/herself and the A player he/she is paired with. The B player with whom a particular A player decides to divide the 10 euro is not the same person as the B player who decides how to divide 10 euro with the particular A player.

Once all A players and all B players will have made their decisions the computer will randomly determine whether the decisions of the A player or those of the B players will be used for payment.

B-Players

Part 1
Welcome to this experiment.

You will receive 5 euro for your participation in the experiment. Depending on your decisions and the decisions of other participants in today's experiment, you can earn money. You will be paid privately at the end of the experiment. In the experiment you will remain anonymous. Your decisions will only be linked to your station id and not to your name in any way. The experiment will take approximately 1 hour.

The participants in this experiment have been randomly divided into three groups. Six of you are of type A, six are of type B and one is of type C. The participants of type A and of type B are in this room, while the participant of type C is in another room.

You are of type B.

The experiment is divided into three stages. You will receive instructions for each stage when it starts. We guarantee that everything we tell you in these instructions will proceed precisely as described. If you have any doubts about whether we are acting in the way described in the instructions, we will be happy to show you at the end of the experiment that this is the case.

We start with stage 1.

In stage 1 the participants of type A and of type B will all independently perform a task during 15 minutes.

The task is as follows. You will see two matrices on the computer screen. Each matrix has 10 rows and 10 columns and is filled with randomly generated numbers. Your job is to find the largest number in each of the matrices and then to add them up. You are not allowed to use calculators, but you can use the paper and pencil that you have found on your desk.

After entering a sum the computer will tell you whether it is correct or incorrect (please note that the time will continue to run while you see this result). Subsequently, irrespective of whether your answer is correct or incorrect, a new pair of matrices will appear. This means that for each pair, you have only one attempt to provide the correct answer. However, there will always be new matrices as long as you are within the 15 minutes limit.

For each correct sum you will receive 1 euro and for each incorrect sum you will receive 0 euros. The total number of euros you have gained will be visible on the screen at the end of this stage.

The type A players will now leave the room, each for a few minutes. Please remain seated quietly until this has been completed.

Part 2
This brings us to the end of the first stage of the experiment.

In this stage all B players are required to remain quietly seated at their desks and wait till the beginning of stage 3.

Part 3
We will now continue with stage 3 of the experiment.

In this stage, each A will be paired with one of the B players and each B player will be paired with one of the A players in the same room. Each A player will have to decide how to divide 10 euro between him/herself and the B player he/she is paired with. Similarly, each B player will have to decide how to divide 10 euro between him/herself and the A player he/she is paired with. The B player with whom a particular A player decides to divide the 10 euro is not the same person as the B player who decides how to divide 10 euro with the particular A player.

Once all A players and all B players will have made their decisions the computer will randomly determine whether the decisions of the A player or those of the B players will be used for payment.

C-Players
Welcome to this experiment.

Your role in today’s experiment is a passive one. You will not be asked to make any decisions.

Your only task is to hear the results of a task performed by six of the other participants. You will not be informed about the content of this task. All you need to know is that it is an important task that is often used to measure people’s talents. Many scientific studies have found that people who have a high score in a task like this are more successful in professional life than people who have a low score. You will not be told, however, what is typically a good or a bad score for this task.

You will be seated in this room. While you are waiting for the other participants, feel free to read anything you like, or to browse your phone. Before the other participants have started their task six of them will be taken to you, one at a time. Each will read a text to you and then return to the laboratory. After all the other participants have completed their tasks, the same six will come here again, one at a time. They will read to you their score and how this ranks amongst the six participants.

You may not speak or interact with the other participants in any way.

For your role in today’s experiment, you will receive 15 euros on top of the 5 euros show-up fee. You will be paid and dismissed after the six participants have told you their scores.

Finally, please treat this room with respect. You are a guest here, so please do not touch anything that is not yours.

Texts Read to C players

Before the summation task:

Your station id is
You must go to room #

Please read the following text to the participant waiting for you in that room:

“I will go back and do a task. After I have done so, I will come back and tell you my score. I will also tell you how my score ranked amongst the six participants.”
After the summation task:

Your station id is
You must go to room #

Please read the following text to the participant waiting for you in that room:

"My score on the task I did was With this score, I was ranked amongst the six participants."
B. Summary Statistics

Table B1 shows participants' characteristics across types and treatments.

Table B1: Participant's Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Type B</th>
<th>Type A-CF/NR</th>
<th>Type A-CF/PR</th>
<th>Type A-SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>0.69</td>
<td>0.56</td>
<td>0.56</td>
<td>0.67</td>
</tr>
<tr>
<td>Economics</td>
<td>0.25</td>
<td>0.33</td>
<td>0.36</td>
<td>0.22</td>
</tr>
<tr>
<td>Age</td>
<td>22.1</td>
<td>21.8</td>
<td>23.2</td>
<td>22.4</td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Notes. Women: fraction of female subjects; Economics: fraction of subjects with a major in economics or business; Age: average age; N: number of subjects.

Table B1 shows that the fraction of women is similar across types. The differences are statistically insignificant (Fisher's exact test, $p=0.676$). Similarly, we observe no significant differences in the fractions of participants with a major in economics and business (Fisher's exact test, $p=0.823$). We distinguish between these majors because these are the fields in which students are most likely to have experienced tasks similar to the summation task. Finally, the average age is also statistically indistinguishable across types (Kruskal-Wallis, $p=0.223$).
C. Raw Data

<table>
<thead>
<tr>
<th>Type</th>
<th>#attempts</th>
<th>#correct</th>
<th>rank</th>
<th>Dictbid</th>
<th>Offer to recipient, dictator game</th>
<th>Gender</th>
<th>Econ</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: B</td>
<td>130</td>
<td>13</td>
<td>1,2,3</td>
<td>1</td>
<td>1</td>
<td>1,2,3</td>
<td>0: other</td>
<td>19</td>
</tr>
<tr>
<td>2: CF-NR</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0: men</td>
<td>19</td>
</tr>
<tr>
<td>3: SR</td>
<td>17</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1: major economics/business</td>
<td>20</td>
</tr>
<tr>
<td>4: CD-PR</td>
<td>15</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>99: missing/graduated</td>
<td>21</td>
</tr>
</tbody>
</table>

Dictator game recipient, Offer to Dictbid

xi
<table>
<thead>
<tr>
<th>1</th>
<th>19</th>
<th>10</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>99</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>13</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>99</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>15</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>99</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>99</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>16</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>99</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>14</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>99</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>19</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>