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Abstract

The classical Ellsberg experiment presents individuals with a choice problem in

which the probability of winning a prize is unknown (ambiguous). In this paper

we study how individuals make choices between gambles in which the ambigu-

ity is in di↵erent dimensions: the winning probability, the amount of the prize

and the payment date, and many combinations. While the decision-theoretic

models accommodate a rich variety of behaviors, we present experimental ev-

idence that points at one systematic behavioral pattern: (i) no ambiguity is

preferred to ambiguity on any single dimension and to ambiguity on multiple

dimensions, and (ii) “correlated” ambiguity on multiple dimensions is preferred

to ambiguity on any single dimension.
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1 Introduction

When making decisions under uncertainty we are often confronted with incomplete

objective information, or ambiguity, on multiple aspects of the decision problem.

The amount of monetary earnings may be ambiguous; the likelihood of the possible

earnings may be ambiguous; the date at which payments will be made may be am-

biguous; etc.. Our willingness to take on ambiguity may depend not only on which

dimensions are ambiguous, but also on the extent to which our decision can a↵ect

the level of ambiguity in the di↵erent dimensions. The goal of this paper is to gain

some understanding of how individuals approach this form of “multi-dimensional”

ambiguity.

The starting point of modern analysis of decision making under ambiguity is the

seminal thought experiment of Ellsberg. In one of its variants, participants faced an

urn with 60 poker chips: 20 of these chips are black, while each of the remaining 40

chips is either red or green (red and green are referred to as the “ambiguous” colors).

One of these chips would be randomly drawn and participants were asked to guess

the color of the chip. If his guess is correct, he would win a prize of $20, which would

be paid immediately.

There are two features of this experiment that we should emphasize. First, all

the gambles involve either no ambiguity, or ambiguity in only one dimension: the

likelihood of winning a known amount of money. Other dimensions, such as the

amount won (if won), or the date of payment, are known. Second, by choosing to bet

on Black, the participant can select a gamble with no ambiguity in any dimension –

the participant can remove all ambiguity.

To explore a more general setup in which ambiguity appears in multiple di↵erent

dimensions, consider the following variations on the classical Ellsberg experiment.

Participants face the same urn as above, and as before only a single chip will be

drawn, and the participant is asked to guess a color. In one variation, the participants

is paid only if a black chip is drawn, but she is paid a number of dollars equal to the

number of chips in the urn of a color chosen: if X is the number of chips in the urn

that have the color chosen by the participant, he wins $X if a black chip is drawn. In

this case the probability of winning is not ambiguous – as the lotteries is paid only if

a black chip is drawn – but the amount won is. In another variation, the participant

is again asked to choose a color, and she is paid, if a chip of that color is extracted,
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a number of dollars equal to the number of chips of that color in the urn. In this

variation, there is a sense in which the ambiguity is on “two dimensions:” not only

the likelihood of winning, but also the amount won. In yet another variation, if the

participant guesses correctly, he wins $X, but these are paid X days from the date

of the experiment. Here, we have added ambiguity on a “third dimension:” how soon

the prize is paid.

This variation of the classical Ellsberg experiment allows us to answer three classes

of questions. A first set of questions is concerned with the correlation of ambiguity

attitudes across dimensions. Are participants ambiguity averse also when prizes, and

not probabilities, are ambiguous? Or when dates are ambiguous? Moreover, is am-

biguity aversion a stable feature ‘across dimensions,’ i.e. if a participant is ambiguity

averse in one dimension, is he more likely to be ambiguity averse in another?

A second set of questions is concerned with situations in which multiple dimen-

sions can be ambiguous at the same time, and where correlations may exist between

ambiguous variables across di↵erent dimensions. How is an individual’s willingness

to accept ambiguity in one dimension depends on the presence of ambiguity in other

dimensions? For example, suppose an individual could decide only whether or not

the probability of winning will be ambiguous. How is her decision a↵ected by whether

or not the amount of winning is ambiguous as well? How is it a↵ected by whether

or not the date of payment is ambiguous? And if it a↵ected, does the agent chooses

to opt for the more ambiguous option in which the various dimensions are positively

correlated, or not? These questions have a particular relevance because in real life

most often we face options which involve ambiguities in many dimensions at the same

time, some of which are fixed and cannot be completely removed.

The third and last set of questions explore whether participants prefer options

with no ambiguity to options in which two or more dimensions are ambiguous. Are

participants still ambiguity averse? Is the proportion of participants who are averse

to “multi-dimensional” ambiguity higher or lower than the proportion who are averse

to each form of “single-dimensional” ambiguity?

This paper addresses these questions with an experimental design that adopts the

above variation of the canonical Ellsberg framework. A key feature of this framework

is that there is a single source of ambiguity, namely, the distribution of colors in an

urn with a known number of chips. This is crucial for our analysis: because there is

only one source of ambiguity, any di↵erence in behavior cannot be due to di↵erences
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in beliefs.

One of the reasons for using experiments to explore the questions above is that

existing theoretical models make little to no predictions over which behavior should

agents follow in these situations (see Section 5). This flexibility/lack of predictive

power is desirable if there is a large heterogeneity of behavior in the population – we

need a flexible model to capture it. If, however, there exists some systematic, repre-

sentative behavior that individuals are more likely to exhibit in these environment,

then we would instead like to have models that capture this pattern – models with a

higher predictive power. Identifying such regularities is then a first necessary step to

understand which additional restrictions should be imposed on existing models.1

Our main findings are the following:

1. The majority of participants are averse to having ambiguity in only one di-

mension (“single-dimensional” ambiguity), regardless of what that dimension is

(probability/prize/time). The proportions, however, vary across the di↵erent

dimensions. Furthermore, the sets of participants who are ambiguity averse in

the various dimensions are, with some degree of error, nested: the largest set

includes participants who are averse only to ambiguous prizes (82% ); partici-

pants who are averse to ambiguous probabilities tend to be a subset of it (76%);

and the set of participants who is averse to ambiguous dates is then a subset of

both (52%).

2. When one dimension is fixed and ambiguous in all available options, and par-

ticipants can choose whether or not to have ambiguity in another dimension,

the majority of participants prefer ambiguity in both dimensions. Moreover,

participants tend to choose the option in which the ambiguity in the dimension

they can a↵ect is perfectly correlated with the ambiguity in the fixed dimension.

That is, participants who preferred no ambiguity when that option was avail-

able, tend to prefer the gamble with the “most exposure” to the ambiguous

variable, when (at least) one of the gamble’s dimensions is ambiguous and fixed

1To better illustrate, it is helpful to make the analogy to the experimental literature on repeated
games. The various folk theorems establish that “almost anything” can be supported in equilibrium.
But do individuals who actually engage in indefinite repeated interaction exhibit such heterogeneity
of behavior? This question has given rise to a growing experimental literature that, like us, investi-
gates whether actual behavior tends to systematically select one of the predicted behaviors. These
findings have in turns led to the development of various refinements meant to increase the predictive
power of the theories.
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in all the available gambles. To illustrate, consider first the standard Ellsberg

gamble in which a participant is paid $20 at the end of the experiment, if he

correctly guesses the color of the chip to be drawn. About 76% of participants

bet on black, and only 12% bet on green. However, when the amount of the

prize is fixed at $g (the number of green chips in the urn), then only 33% bet

on black, while 55% bet on green. Similarly, consider the gamble where a par-

ticipant chooses a color X, and he wins $20 only if a black chip comes out, but

the payment is made in x days, where x is the number of chips of the color

X. About 51% of participants choose black and only 16% choose green. In

contrast, when the participant wins $r (the number of red chips) only if the

color red comes up, only 30% of participants choose black, while 48% choose

green (notice that the prize amount is perfectly correlated with how quickly the

payment is received).2

3. When comparing options with ambiguity in multiple dimensions against options

with no ambiguity, the majority of participants prefers the option with no am-

biguity. However, the proportion of participants who prefer no ambiguity to

ambiguity in multiple dimensions tends to be smaller than the proportion pre-

ferring no ambiguity to ambiguity in a single dimension. For instance, 82% of

participants are averse to ambiguity only in prizes, 76% are averse to ambiguity

only in probability, but only 67% prefer the unambiguous option to an option

in which both prize and probabilities are ambiguous and perfectly correlated.

Our findings therefore suggest that, despite the richness of behavior that is consis-

tent with our models, individuals tend to exhibit one particular pattern of behavior:

aversion to “single-dimensional” ambiguity, (milder) aversion to “multi-dimensional”

ambiguity; and a preference for “multi-dimensional” ambiguity over “single-dimensional”

ambiguity. As a robustness check, we also run an additional experiment in a very

di↵erent participant pool, Amazon’s Mechanical Turk, and we find a very similar

pattern (see Section 4).

It is not our intention to present the above findings as “surprising,” in the sense

that they contradict the intuitions we have from our models: as we mentioned above,

current model do allow for the observed behavior. At the same time, however, as

these models make essentially no predictions on what should participants choose in

2All the changes described are significant at the 1% level.
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these situations, without actually running an experiment there is no a priori reason to

expect that that the majority of participants would exhibit the patterns above. To the

best of our knowledge, we are the first to investigate attitudes towards ambiguity in

either probability, prize or time, or any combination of these dimensions. The closest

study to ours is the recent independent work of Eichberger et al. (2011). These authors

investigates the question of whether individuals that are faced with two unrelated

and independent sources of ambiguity treat these two sources as independent of each

other. This question is addressed with a natural extension of the classical Ellsberg

2-urn experiment where a participant wins prize x 2 {a, b} if he guesses correctly

and y 2 {a, b}/{x} otherwise. They investigate whether the behavior of participants

change if they they do not know whether x = a or x = b, where this uncertainty is

determined independently of the composition of the urn. While both this study and

ours incorporates ambiguity in probability and prize, the two papers ask di↵erent

questions and employ completely di↵erent designs. The most important di↵erence

lies on the fact that their experiment exploit distinct sources of ambiguity for prize

and probabilities – therefore testing whether subject consider them as independent.

By contrast, as we mention above in our analysis all ambiguity comes from a unique

source, allowing us to concentrate on the di↵erent attitudes without having to consider

the beliefs on the joint distribution. We, therefore, view both works as providing

complementary insights into the complex nature of attitudes towards ambiguity.

Our findings may have potential implications for decision-making under ambiguity

in applications. In most concrete economic settings, a decision-maker cannot remove

all ambiguity from choice problems he faces. For example, even if the decision-

maker could choose a safe investment that guarantees a certain interest, the inflation

rate may be ambiguous, there may be uncertainty regarding the decision-maker’s

need for liquidity (hence the time of payment), etc.. Our results suggest that in

many circumstances, decision-makers may be more likely to prefer uncertain prospects

where more dimensions are ambiguous and correlated.

The rest of the paper is organized as follows. Section 2 describes the experimental

design. Section 3 presents the results of the lab experiment. Section 4 compares the

lab results to the results of an online experimental treatment conducted via Amazon’s

Mechanical Turk. Section 5 illustrates how existing models can accommodate a rich

pattern of behavior. Concluding remarks are given in Section 6. The Appendix

contains supplementary analysis as well as a description of the instructions and screen
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shots of the experiment.

2 Experimental design

The lab experiment was carried out in the Social Science Experimental Laboratory

(SSEL) at the California Institute of Technology. Participants were undergraduate

students at Caltech, recruited from a pool of volunteer participants, maintained by

SSEL. There were a total of 97 participants. There were a total of four sessions, each

lasting about 30 minutes, and each participant took part in one and only one session.

All sessions used the following procedure. The participants read instructions that

were printed on paper and which they could refer to at any point in the experiment

(a copy of the instructions appears in Appendix C). The experimenter stood in front

of the participants and showed them an opaque cloth bag. The participants were told

that the bag contains 60 colored poker chips. Of these 20 are black, while each of the

remaining 40 chips can have one of two colors: red or green. Let r denote the number

of red chips in the bag and let g denote the number of green chips. The participants

know neither the values of r and g, nor how these values are determined. They were

told that they could inspect the content of the bag at the end of the experiment.

At the end of the experiment a single chip will be drawn from the bag, and the

participants’ task is to make choices between groups of two or three gambles that

depend on the composition of the bag and on the color of the chip extracted. A

gamble assigns to each color that could be extracted an amount of dollars m and

a time of payment t. For simplicity of exposition, in what follows we shall use the

following notation. Given the (ambiguous) composition of the bag, the probability of

extracting a a black, red, or green chip are, respectively, 20
60 ,

r

60 ,
g

60 . We then denote

gambles by a triplets (p, $m, t), by which we understand the gamble that pays $m in

t days with probability p, and $0 otherwise.3 All the three dimensions of a gamble

could depend on the composition of the bag: for example, ( r

60 , $g, r days) denotes the

gambles that pays $g in r days with probability r

60 , i.e. if a Red chip is extracted.

Participants made their choices on a computer. The decision tasks were divided

into seven screens. Five of the screens displayed nine gambles arranged in three rows

3Each gamble was presented as 3⇥ 2 table, where each row corresponded to a color and the two
columns represented the payment-date pair (see Figure 1). Moreover, since the term “gamble” may
have a negative connotation, we used the term “lottery” in the experiment.
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Figure 1: Screenshot of the typical screen

of three gambles; two screens had only six gambles arranged in two rows of three

gambles. In each screen, for each row/column a participant was asked to choose

his most preferred gamble in the row/column. For screens with nine gambles, a

participant was also asked to choose his most preferred gamble on the main diagonal

(from top-left to bottom-right).4 Figure 1 displays screen-shot of one of the seven

screens (online Appendix D contains the remaining six screen-shots).

The choice problems in these screens can be categorized as follows.

1. Attitude toward “ambiguity in probability”. The participant chooses the proba-

bility of winning from {20
60 ,

r

60 ,
g

60}, for gambles in which the amount of winning

is fixed at x dollars and the date of payment is fixed at t days away, where (x, t)

4Hence, five screens consisted of seven choice problems (with three alternatives each), while two
screens consisted of five choice problems (three of which had two alternatives and the remaining two
had three alternatives).
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included the following values:

x : 20 20 r g r g 20 20

t : 0 20 0 0 20 20 r g

2. Attitude toward “ambiguity in prizes”. The participant chooses the dollar

amount of winnings from {20, r, g}, when the probability of winning is fixed

at p and the date of payment is fixed at t days away, where (p, t) included the

following values:

p : 20
60

20
60

20
60

20
60 1 r

60
g

60
r

60
g

60

t : 0 20 r g 20 0 0 20 20

3. Attitude toward “ambiguity in timing”. The participant chooses whether pay-

ments will be made in 20 days, r days or g days, when the amount of winning

is fixed at x dollars and the probability of payment is fixed at p, where (p, x)

included the following values:

p : 1 20
60

20
60

r

60
g

60
r

60
g

60

t : 20 r g 20 20 r g

4. Attitude towards ambiguity in “two dimensions”. Each dimension may be

viewed as having a value measured in units appropriate to that dimension:

each unit in the probability dimension is 1
60 , each unit in the prize dimension

is $1, and each unit in the time dimension is one day. The participant chooses

x 2 {20, r, g} such that the values of two dimensions is x units, while the value

of the third dimension is fixed and non-ambiguous (and zero when it is the

date).

5. Attitude towards ambiguity in “all three dimensions”. The participant chooses

x 2 {20, r, g} such that the value of each dimension is x units.

After the instructions were read and any questions were answered, the participants

made their choices on a computer. All participants started with the screen in which

all payments were made at the end of the experiment (the one depicted in Figure

1). This screen contained the standard Ellsberg question. Following this screen,
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each participant was assigned to a random sequence of the six other screens.5 All

participants completed a total of 45 choice problems. At the end of the experiment,

for each participant the program randomly selected one of the 45 choice problem, and

then the participants witnessed the experimenter draw a chip from the bag and show

the content of the bag.6 This determines the amount won by the participants given

the selected question and their choice in that question.

All participants received a show-up fee of $10 at the end of the experiment. Any

participant who won additional amount to be paid with no delay received his payment

also at the end of the experiment. Participants who earned additional amounts that

were to be paid at a later date were given the choice between three methods of

delivery: personally picking up a cash from a sta↵ member; receiving the check by

mail; or being paid through Paypal (see the instructions in Appendix C for more

detail).7 Of note, a large majority of participants choose to pick up their payment in

person from a sta↵ member.

There are many possible ways of displaying the choice problems we are interested

in. Our choice of display is motivated by the following considerations. First, we

wanted to minimize the inconsistencies that are due to errors or carelessness. If

participants were presented with just a vertical list of choice problems, they are more

likely to miss inconsistencies in their answers. Our display gives participants a better

opportunity to internalize the relationship between di↵erent choice problems that

have common elements. Similarly, we wanted to minimize the possibility that the

e↵ect on choice of ambiguity in a fixed dimension (in the sense that the participant’s

decision cannot remove this ambiguity) could be due to mistake or inattention. The

matrix display emphasizes the multi-dimensionality of the problem, thus increasing

the likelihood that participants would understand that they can remove ambiguity in

5Only after a participant completed making all choices in a screen, could he press a button to
take him to the next screen. Once a participant left a screen, he could not return to it.

6Our lab design therefore uses the common Random Decision Selection (RDS) mechanism in
which participants are paid for only one randomly selected decision. Assuming only that participants’
preferences for gambles respect monotonicity (dominated gambles are never chosen), Azrieli et al.
(2012) show that the RDS mechanism is incentive compatible.

7Note that the choice problems in our experiment had the feature that whenever a participant
had the option to choose an ambiguous date of payment, the non-ambiguous date was a known delay
of 20 days. Hence, it is not crucial for the purpose of this experiment to equate the transaction cost
of payment today versus payment in the future. Since participants may di↵er in their ranking of the
various payment methods, we allowed participants to choose their preferred method (rather than
impose one of the three). Thus, if we normalize the transaction cost of the most preferred method,
then each participant is facing this normalized cost.
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some dimensions but not in others.

In all the screens apart for the two screens that tested for risk-attitudes, the first

option (left-most or top) corresponded to no-ambiguity in the relevant dimension (i.e.,

“betting on black”) the middle option corresponded to “betting on red,”and the last

option corresponded to “betting on green”. Since we are interested in the question

of whether individuals who are “ambiguity-averse” in probabilities are willing to take

on ambiguity in other dimensions, we wanted to make it di�cult to switch away from

the no-ambiguity decision. Participants, who are inattentive and just want to finish

the task, are more likely to just click on the first option in the dropdown menu. Thus,

by keeping no-ambiguity to be the first option we minimize the risk of misinterpreting

such inattentive participants as being ambiguity-seeking.

Fixing the positions of the red and green options allow us to check whether par-

ticipants are sensitive to the positive and negative correlations across the ambiguous

dimensions net of order e↵ects. For example, consider the problem of guessing what

color chip will be drawn, when a correct guess pays $r. As explained later, we will

interpret a guess of red as choosing “more exposure to ambiguity,”and guessing green

as choosing “ to hedge against ambiguity.”If we allow the two colors to appear in

a di↵erent order, it is hard to disentangle whether this is due to order e↵ects. If,

instead, we fix the order, and we compare with the identical question in which prize

is fixed at $g and find the same results, then we know it cannot be due to order

e↵ects.8

3 Results

Our analysis of the data proceeds as follows. We start with a basic analysis of the

consistency of choices. Next, we analyze participants’ attitude towards ambiguity,

when only a single dimension – prize/date/probability – is ambiguous. We then turn

to analyze how participants react to the contemporaneous presence of multiple forms

of ambiguity. First, we fix one dimension to be ambiguous, and investigate whether

the attitude towards ambiguity in another dimension is a↵ected. Second, we study

the agent’s preferences between options with no ambiguity and options with di↵erent

8Alternatively, one could randomize the order and then check whether the location of the question
had a statistically significant e↵ect on choice. The disadvantage of this approach is that there would
be fewer observations for each choice, as a choice would involve not only the color chosen but also
the location of the color in the display.
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forms of ambiguity at the same time.

3.1 Preliminaries

We begin by discussing some basic properties of our data. In terms of risk-attitudes,

we label as ‘risk-loving’ participants who chose a gamble that pays $40 in 20 days if

a black chip is drawn (and zero otherwise) over a gamble that pays $20 in 20 days if

a red or green chip is drawn (and zero otherwise). A participant was labeled ‘strictly

risk-averse’ if he chose a gamble that paid $13 in 20 days no matter which chip was

drawn over a gamble that paid $40 in 20 days if a black chip was drawn (and zero

otherwise). About 68% of all lab participants were not risk-loving, and about 44%

were strictly risk-averse. Thus, about a quarter of the participants could be labeled

as risk-neutral.9

Because the experiment is designed to be entirely symmetric with respect to the

two ambiguous colors, red and green, with the exception of the order in which options

are presented (one color always appears before the other), we should expect partic-

ipants to treat these colors symmetrically. This seems to be the case in our data.

First of all, bets on either color are not significantly di↵erent. Second, the behavior

in situations in which one dimension is fixed and depends on the number of red chips

is essentially identical to the behavior in which it depends on the number of green

chips.10

We also investigated to what extent participants gave consistent answers. One

form of consistency is transitivity in the answers.11 About 64% of participants gave

transitive answers across all questions in the seven screens they faced. A second form

of consistency concerns answers to identical questions. One of the questions in the ex-

periment was asked three times, and 71% of the participants gave consistent answers.

9The two screens that presented the risk-attitude question also tested whether participants
changed their decisions if the date of payment was ambiguous (see screen shots in Appendix D). We
found no significant change in the answers.

10The only exception to this symmetry is a significant di↵erence between red and green for choos-
ing the date when everything else is fixed: when choosing between ( 2060 , $20, 20), (

20
60 , $20, r), and

( 2060 , $20, g), over twice as many participants choose the second compared to the third option. We
see no obvious explanation for this asymmetry, especially since it seems to be confined to this specific
question.

11We should emphasize that a violation of transitivity in this context need not represent a vio-
lation of ‘rationality,’ but could simply be due the fact that participants are indi↵erent but break
indi↵erences in di↵erent way depending on the questions. This is particularly relevant in the present
context, where we expect participants to treat bets on red or green in a similar way.

12



The color (X)
chosen by the
participant

Probability X Black X Black Black
Amount $20 $x $20 $x $20
Date 0 days 0 days 20 days 20 days x days

Black⇤ 76% 82% 73% 75% 52%
Red 11% 9% 13% 15% 34%
Green 12% 8% 13% 9% 14%

Table 1: Attitude towards uni-dimensional ambiguity. The ‘*’ denotes the non-ambiguous option

This consistency is much stronger in aggregate: essentially identical proportions ap-

ply to the three questions. Finally, we verified that most participants gave the same

answers to questions that di↵ered only in the color in which the ambiguity is fixed.12

In what follows we report our results for the entire participant pool. Results are

qualitatively, and in most cases also quantitatively very similar if we restrict attention

to only transitive participants.

3.2 Attitude towards ambiguity in each dimension

We now turn to investigate how participants approach ambiguity when only a single

dimension of the gamble is ambiguous. In what follows we say that a participant

is averse to ambiguity in a choice problem if he chooses the gamble with the most

objective information. Table 1 summarizes the aggregate results.13

The following observation is implied by this table.

Observation 1. The majority of participants are averse to ambiguity in each dimen-

sion. However, the proportions of ambiguity averse participants vary across dimen-

sions. In particular, the three dimensions can be ranked according to the proportion

12We also checked whether the distribution of responses for each of question in a matrix is inde-
pendent of the position that the matrix appears in (2nd, ..., 7th) by running 38 Fisher exact tests.
None of these tests were significant at the 1% level, and only three (out of the 38) were significant
at the 5% level.

13The question in which participants are asked their attitude towards ambiguous dates, i.e. to
choose between ( 2060 , $20, 20), (

20
60 , $20, r), and ( 2060 , $20, g), was actually asked three times during the

lab experiment. Table 1 contains the average answer. Answers are very consistent: the fraction of
participants choosing ( 2060 , $20, 20) ranges between 51% and 55%, the fraction choosing ( 2060 , $20, r)
between 33% and 36%, and the fraction choosing ( 2060 , $20, g) between 12% and 16%. By analyzing
individual questions, 71% of participants exhibit the same attitude in all three questions (the re-
maining 29% of participants might have given di↵erent answers because they were indi↵erent and
broke the indi↵erence in a di↵erent way at least in one of the three questions).
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of participants who are averse to ambiguity in a single dimension: date  probability

 prize.

Observation 1 is based only on aggregate data. This raises the question of whether,

at an individual level, the set of individuals who are averse to single-dimensional

ambiguity expands as we change the ambiguous dimension from dates to probability

to prize. This is approximately true: between 89% and 92% of participants who

are ambiguity averse over dates are also ambiguity averse over prizes, and between

84% and 86% are also ambiguity averse over probabilities;14 about 91% (67/74) of

participants who are ambiguity averse over probabilities are also ambiguity averse over

prizes. This suggests that, with some degree of error, we can partition our dataset

into four groups: those participants who are not ambiguity averse to any dimensions;

those participants who are ambiguity averse only over prizes; participants who are

averse to ambiguity in prizes and probabilities; and participants who are averse to all

ambiguities. The last group contains at most 52% of the pool.

The relatively high proportion of aversion to ambiguity (only) in prizes may be

explained by risk-aversion. For example, a decision maker who is ambiguity neutral

and follows expected utility would still dislike ambiguity over prizes just by risk

aversion.15 If we redo Table 1 for risk-averse participants, we obtain very similar

proportions. Redoing it for risk-loving participants yields Table 2. If we compare

with Table 1, the proportion of participants who are averse to ambiguity in probability

remains the same, but the proportions of participants who are averse to ambiguity in

prizes decreases.

Our data is split 50-50 between participants who are averse to ambiguity (only)

in the date to those who are not. One possible explanation for this is that there is

heterogeneity in the agent’s patience and beliefs on the composition of the bag. Under

the assumption that participants’ preferences are additively separable over time with

a standard exponential discount factor �, in Section 5 we show that the following is

true: for a given prior belief on the number of red chips r in the bag, there exists

14In the case of aversion towards ambiguous dates we have a range of answers because, as we men-
tioned above, the question over ambiguous dates was asked three times. More precisely, the fraction
of subjects who are ambiguity averse over prizes amongst those who are ambiguity averse over dates
is: 43/49, 45/49, and 47/53; fraction of subjects who are ambiguity averse over probabilities amongst
those who are ambiguity averse over dates is: 42/49, 41/49, and 45/53.

15We also checked whether winning for sure a↵ects the aversion to ambiguity on the prize (i.e. we
asked participants to choose between a sure prize of $20, a sure prize of $r and sure prize of $g). We
found no significant di↵erence.
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The color (X)
chosen by the
participant

Probability X Black X Black Black
Amount $20 $x $20 $x $20
Date 0 days 0 days 20 days 20 days x days

Black⇤ 74% 68% 74% 55% 48%
Red 10% 19% 10% 32% 33%
Green 16% 13% 16% 13% 18%

Table 2: Attitude towards uni-dimensional ambiguity for risk-loving participants. The ‘*’ denotes

the non-ambiguous option

a threshold discount factor �⇤ such that the non-ambiguous gamble is preferred to a

gamble in which only the payment date is ambiguous if and only if the discount factor

is at least �⇤ (where the value of the threshold �

⇤ depends on the prior belief). That is,

even allowing subjects to hold ‘pessimistic,’ if they are impatient enough they would

prefer the ambiguous gamble: intuitively, this is due to the fact that exponential

discounting is convex, inducing a preference for variance. Therefore, our data suggest

that about half of our subjects are impatient enough to prefer the gamble with an

ambiguous payment date.16

3.3 ‘Separability’ in the dimensions of ambiguity

We now turn to analyze whether the dimensions of ambiguity are ‘separable’ in the

sense that the presence of a (fixed) ambiguity in one dimension a↵ects the ambiguity

attitude of the agent in another dimension. To illustrate, let us compare two choice

situations in which the agent chooses the color to bet on: 1) the standard Ellsberg

question, in which the agent chooses between ( 2060 , $20, 0), (
r

60 , $20, 0), and ( g

60 , $20, 0);

and the identical question in which the prize is fixed at $r instead of $20, i.e. the

choice between (2060 , $r, 0), (
r

60 , $r, 0), and ( g

60 , $r, 0). Will the decision maker choose

the same color in the two decision problems? If he does, we say that he exhibits a

‘separable’ attitude towards ambiguity in probability.

We do not consider this separability neither apriori obvious nor normatively de-

sirable. For example, an agent who chooses to bet on Black in the first (Ellsberg)

16Note that even though the time horizon in our experiment is at most 40 days, past experiments
have shown that lab participants tend to exhibit abnormally low discount factors (see Camerer
(1995)). Hence, there is no apriori reason to expect most participants in the lab experiments to
necessarily exhibit aversion to ambiguity in the payment date.
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problem might decide to bet on green in the second one, because he is already ‘ex-

posed’ to the number of red chips via the ambiguity in prizes, and may prefer to

‘hedge,’ or ‘reduce her exposure,’ by betting on green: if there are few red chips he

might win a small amount, but at least he wins with a high probability.17 Alterna-

tively, this individual might instead decide to bet on red, to ‘increase her exposure:’

if there are many red chips he wins a large sum with a large probability, while if there

are few red chips he wins a small amount with a small probability. In particular,

we say that an individual ‘switches to more exposure’ if he bets on red (green) in a

decision problem where the prize is $r ($g) and the date is unambiguous, but he bets

on black when the prize is $20 and the date is unambiguous.

The notions of separability, hedging, and more exposure can naturally be gen-

eralized to all of our questions. Notice however the following: when the date is

unambiguous more exposure means that the participant chooses a gamble where the

prize and probability both depend positively on the same color; by contrast, when

the date is ambiguous, more exposure instead means that the date is negatively cor-

related with either the prize or the winning probability. For example, if the winning

probability is fixed at 20
60 and prize is fixed at $r, then the participant hedges if he

chooses to be paid in r days, while he opts for more exposure if he chooses to be paid

in g days: with the latter bet, when r is high the prize is high and and is paid soon

(g is small), and when r is low the prize is low and it is delayed.

Table 3 displays the choices of the agent about ambiguity in probabilities, prize,

and date, both when all other dimensions are known, and when they are fixed and

ambiguous.

These data reveals a clear pattern of choice.

Observation 2. Compared to a choice problem that includes a gamble with no am-

biguity (and where two of the three dimensions are fixed and unambiguous), making

one of the dimensions ambiguous (but fixed), leads to a significant change in behavior,

most of which is in the direction of more exposure.

To illustrate this observation note that 76% of the participants exhibited the

standard Ellsberg pattern of betting on black when the prize is $20 and the payment

17To see why a participant may decide to ‘hedge’, assume he has max-min expected utility prefer-
ences (see Section 5) with linear utility and only two priors: probability one on r = 1 and probability
one on r = 39. If he chooses either ( r

60 , r, 0) or ( g

60 , g, 0), his expected utility is 1
60 . If, however, he

chooses ( r

60 , g, 0) or (
g

60 , r, 0), his expected utility is 39
60 .
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(20/60,$20,0) 76% (20/60,$20,0) 82% (20/60,$20,20) 52%
(r/60,$20,0) 11% (20/60,$r,0) 9% (20/60,$20,r) 34%
(g/60,$20,0) 12% (20/60,$g,0) 8% (20/60,$20,g) 14%

(20/60,$r,0) 31% (r/60,$20,0) 36% (r/60,$20,20) 29%
(r/60,$r,0) 52% (r/60,$r,0) 52% (r/60,$20,r) 15%
(g/60,$r,0) 18% (r/60,$g,0) 12% (r/60,$20,g) 56%

(20/60,$20,20) 73% (20/60,$20,20) 75% (20/60,$r,20) 30%
(r/60,$20,20) 13% (20/60,$r,20) 15% (20/60,$r,r) 22%
(g/60,$20,20) 13% (20/60,$g,20) 9% (20/60,$r,g) 48%

(20/60,$20,r) 49% (20/60,$20,r) 63% (r/60,$r,20) 19%
(r/60,$20,r) 21% (20/60,$r,r) 18% (r/60,$r,r) 24%
(g/60,$20,r) 30% (20/60,$g,r) 20% (r/60,$r,g) 58%

Choosing1Prob. Choosing1Prize Choosing1Date

Table 3: E↵ect of a fixed ambiguous dimension (aggregate)

date is today. Only 11% chose to bet on red in this choice problem. However, when

the prize is changed to $r (the number of red chips), more than half of the participants

who chose to bet on black (i.e., chose the unambiguous gamble) in the original choice

problem, now switch to bet on red (which here means more exposure). Only 28% of

the participants bet on black both when the prize is $20 and when it is $r (i.e., they

continue to choose the gamble with the least ambiguity).

A similar e↵ect is observed when two dimensions are made ambiguous (see bottom

matrix in Table 4). About half of the participants choose a payment date of 20 days

over r and g days when a prize of $20 is awarded if a black chip is drawn. When

the prize and winning probabilities are changed to $r and r/60, about half of the

participants who chose a date of 20 now choose a date of g days, thereby choosing

a gamble in which the prize, probability and how soon the payment is made, are all

ambiguous and perfectly correlated. In fact, close to 60% of all participants choose

this “triple-ambiguity” gamble.

The only case in which making one of the fixed dimensions ambiguous has a

small e↵ect is when subject decide on the prize – $20, $r or $g – and the date turns

ambiguous. In this case 75% of participants choose a prize of $20 when the payment

date is 20 days away, while 63% choose it when it is r days away. We cannot reject the

hypothesis that the distribution of answers across the two choice problems is the same

17



(in all other cases, we can reject this hypothesis at the 1% level). Indeed, according

to Table 4 making the date ambiguous appears to have the smallest impact on choices

relative to making the prize or probability ambiguous.

While Table 3 only shows us the e↵ects of fixing one dimension ambiguous and

equal to the number of red chips, in the experiment we also ask the corresponding

questions in which the fixed ambiguous dimension is equal to the number of green

chips. Results are remarkably similar, confirming the robustness of the findings: see

Table A.1 in Appendix A. In fact, almost every participant who switches from betting

on black, when one of the fixed dimensions is positively correlated with the number

of red chips, also tends to switch in the same direction (i.e. towards more exposure

or hedging) when the same fixed dimension is positively correlated with the number

of greens. (This is illustrated in Table A.2 in Appendix A.)

We have also analyzed the behavior at an individual level. In particular, if we

focus on an agent who has chosen a particular color to a↵ect the ambiguity in one

dimension when the other dimensions are known, we can analyze which color he would

tend to choose when one other dimensions is fixed and ambiguous. Table 4 contains

this data, where the main diagonal in each of these tables displays the fraction of

participants who chose the same color in both choice problems. From the table it is

clear how participants change the color to bet on in the direction of more exposure.

Our data therefore reveals a strong propensity to prefer a gamble in which both the

prize and probability are ambiguous and perfectly correlated (the gamble with more

exposure) to either a gamble in which these dimensions are negatively correlated (the

gamble that o↵ers hedging) or a gamble in which one of these dimensions is objectively

known (the gamble with the least amount of ambiguity). We should emphasize that

for some prior beliefs an expected utility maximizer – who is not too risk-averse –

would exhibit such preferences because of the convexity induced by this uncertainty.

This is easiest to see under risk neutrality: in this case, in the computation of the

expected utility the unknown probability and prize are multiplied, thus appearing

as a square term (convex), leading her to prefer this option to the option with only

one kind of ambiguity. Of course, however, if most of our participants were standard

subjective expected utility maximizers we would not have observed such high fraction

of participants choosing no ambiguity whenever it is present (more on this in the next

subsection).

To account for the possibility of random errors, we also estimated the e↵ect of in-
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(20/60,'20,'0)' (r/60,'20,'0)' (g/60,'20,'0)'
Choose'PROB.'5 (20/60,'r,'0)' .28 .02 .01 .31
Effect'of'fixed (r/60,'r,'0)' .40 .05 .06 .52
ambiguous'PRIZE (g/60,'r,'0)' .08 .04 .05 .18

.76 .11 .12 1

(20/60,'20,'0)' (r/60,'20,'0)' (g/60,'20,'0)'
Choose'PROB.'5 (20/60,'20,'r)' .45 .02 .02 .49
Effect'of'fixed (r/60,'20,'r)' .08 .08 .04 .21
ambiguous'DATE (g/60,'20,'r)' .20 .03 .07 .30

.73 .13 .13 1

(20/60,'20,'0)' (20/60,'r,'0)' (20/60,'g,'0)'
Choose'PRIZE'5 (r/60,'20,'0)' .36 .00 .00 .36
Effect'of'fixed (r/60,'r,'0)' .41 .06 .04 .52
ambiguous'PROB. (r/60,'g,'0)' .05 .03 .04 .12

.82 .09 .08 1

(20/60,'20,'20)' (20/60,'r,'20)' (20/60,'g,'20)'
Choose'PRIZE'5 (20/60,'20,'r)' .62 .01 .00 .63
Effect'of'fixed (20/60,'r,'r)' .08 .07 .02 .18
ambiguous'DATE (20/60,'g,'r)' .05 .07 .07 .20

.75 .15 .09 1^

(20/60,'20,'20)' (20/60,'20,'r)' (20/60,'20,'g)'
Choose'DATE'5 (r/60,'20,'20)' .28 .00 .01 .29
Effect'of'fixed (r/60,'20,'r)' .01 .12 .02 .15
ambiguous'PROB. (r/60,'20,'g)' .26 .21 .09 .56

.55 .33 .12 1

(20/60,'20,'20)' (20/60,'20,'r)' (20/60,'20,'g)'
Choose'DATE'5 (20/60,'r,'20)' .27 .02 .01 .30
Effect'of'fixed (20/60,'r,'r)' .07 .12 .02 .22
ambiguous'PRIZE (20/60,'r,'g)' .16 .19 .13 .48

.51 .33 .16 1

(20/60,'20,'20)' (20/60,'20,'r)' (20/60,'20,'g)'
Choose'DATE'5 (r/60,'r,'20)' .16 .02 .00 .19
Effect'of'fixed (r/60,'r,'r)' .08 .11 .04 .24
ambiguous'PRIZE (r/60,'r,'g)' .26 .23 .09 .58
&'ambiguous'PROB. .51 .36 .13 1

^:'not'significant'

Table 4: E↵ect of a fixed ambiguous dimension (individual)

19



Choosing Coeff. RRR Choosing Coeff. RRR Choosing Coeff. RRR
Probability (Std.6Err.) Prize (Std.6Err.) Date (Std.6Err.)

Constant !1.7987 Constant !1.7874 Constant !0.4308**
(0.2773) (0.2472) (0.1855)

Amb.+Prize+Red 2.3095*** 10.069 Amb.+Prob.+Red 2.1440*** 8.534 Amb.+Prob.+Red !0.1934 0.824
(0.3486) (0.2876) (0.2690)

Amb.+Prize+Green 0.8179** 2.266 Amb.+Prob.+Green 0.4790 1.276 Amb.+Prob.+Green 1.0708*** 2.918
(0.3519) (0.3434) (0.2115)

Amb.+Date+Red 0.9232*** 2.517 Amb.+Date+Red 0.1779 2.241 Amb.+Prize+Red 0.1599 1.173
(0.2843) (0.2311) (0.2278)

Amb.+Date+Green 1.5039 4.499 Amb.+Date+Green 0.7777*** 1.842 Amb.+Prize+Green 0.8812*** 2.414
(0.2550) (0.1828) (0.1730)

Amb.+Prob.+& 0.6759** 1.966
Prize+Red (0.3080)

Amb.+Prob.+& 1.4173*** 4.126
Prize+Green (0.2659)

Table 5: Multivariate Logit regressions on the impact of making fixed dimensions ambiguous

when the participants can a↵ect the ambiguity of one dimension. The constant is the log odds

ratio between choosing red to choosing black when the remaining dimension is fixed and objectively

known. *** and ** denote significance at the 1% and 5% levels, respectively.

troducing fixed ambiguous dimensions using multinomial logistical regressions. Table

5 displays the estimation results for each of the three dimensions when participants

could a↵ect the ambiguity in only a single dimension (Table A.3 in Appendix A

displays estimation results of linear regressions).18

To better understand these, estimates consider the case in which the participant

chooses red when the only dimension he can a↵ect is the winning probability. The

constant term in this case is �1.8, which is the log of the ratio of participants who

choose red when all fixed dimensions are objectively known (0.12) to the ratio of

participants who choose black in this case (0.75). When the prize is changed from

$20 to $r, the distribution of choices changes to 31% on black and 52% on red. This

corresponds to a log ratio of 0.51, which is 2.31 times higher than the constant. This

is the coe�cient of the variable Amb. Prize Red, which is positive and significant (at

18These regressions estimate the log ratio of choosing the ambiguous color red relative to the non-
ambiguous color black. The constant term estimates this log ratio in the benchmark case where the
fixed dimensions are non-ambiguous (e.g. $20 and 20 days when participant chooses probability).
Table 5 reports both the coe�cients and the relative risk ratio. (The relative-risk ratio is the
exponential of the regression coe�cient.)
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1%), reflecting the fact that the log odds ratio of choosing red has gone up when

the winning probability was changed from 20/60 to r/60. These findings support our

conclusions from the above analysis of individual behavior. Tables A.4 and A.5 in

Appendix A display the regression analysis for choosing the color green, which is

essentially identical, and for the remaining cases that were covered by Table 3 above.

These regressions also support our above conclusions for the propensity to choose

more exposure.

Finally, we should emphasize that we can interpret bets as having more or less

exposure to uncertainty, in a way that is independent of the participant’s beliefs,

only because in our experiment all ambiguity – whether it is on probability, prize,

date or any combination of these dimensions – is determined by the same random

variable: the number of red (green) chips in the urn. To understand the importance

of this, consider an alternative environment where each dimension of the gamble is

determined by a di↵erent random variable. For example, suppose there were two

separate urns with 60 chips each, both of which contain 20 black chips, but with

possibly di↵erent distribution of red and green. Now consider a bet which pays if a

given color is drawn from one urn, but the monetary prize (to be paid immediately)

equals the number of red chips in the second urn. In this example, whether betting

on red on the first urn means more or less exposure to uncertainty depends on the

participant’s beliefs regarding the joint distribution over the composition of the two

urns (e.g. a participant may believe that the number of red chips in one urn equals

the number of green chips in the other, or that the two urns are identical).19

3.4 Attitude towards compound ambiguity

We now turn to analyze the case in which participants face the choice between no

ambiguity and gambles having ambiguity in more than one dimension. While our

analysis in the previous section shows that participants might prefer to have multiple

dimensions being ambiguous to only one dimensions being ambiguous, we do not know

how these compare with options with no ambiguity. Table 6 displays this comparison.

This table implies the following.

Observation 3. The majority of participants choose the non-ambiguous gamble over

19This is similar to the situation studied in Eichberger et al. (2011).
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(20/60,'$20,'20) 64% (20/60,'$20,'20) 77%
(r/60,'$r,'20) 21% (20/60,'$r,'r) 15%
(g/60,'$g,'20) 15% (20/60,'$g,'g) 7%

(20/60,'$20,'20) 71% (20/60,'$20,'20) 78%
(r/60,'$20,'r) 19% (r/60,'$r,'r) 14%
(g/60,'$20,'g) 10% (g/60,'$g,'g) 7%

Amb.%in%Prob%&%Prize Amb.%in%Prize%&%Date

Amb.%in%Prob%&%Date Amb.%in%Prob,%Prize%&%Date

Table 6: Choice between no-ambiguity and multi-dimensional ambiguity.

gambles in which multiple dimensions are ambiguous.

Observation 3 above shows that, even though we have seen that a large fraction of

participants are attracted to an ambiguous gamble where the prize is perfectly corre-

lated with the winning probability, participants still prefer options with no ambiguity.

Consider for example the gamble that pays $r today if a red chip comes up. About

52% of participants choose this gamble when they can only a↵ect the winning prob-

ability while the prize and date are fixed at $r and zero days, respectively. Exactly

the same percentage chooses this gamble when participants can only a↵ect the prize

while the winning probability and date are fixed at r/60 and zero days, respectively.

However, the proportion choosing ( r

60 , $r, 0) drops to 18% when the non-ambiguous

gamble (2060 , $20, 0) is also available.

Even if the majority of participants prefer the option with no ambiguity, if we com-

pare Table 6 with Table 1, we observe that the fraction of participants who choose

the no-ambiguity gamble (2060 , $20, 20) drops from 75% to 64% when (2060 , $r, 20) and

(2060 , $g, 20) are replaced with ( r

60 , $r, 20) and ( g

60 , $g, 20). Instead, when the time di-

mension becomes also ambiguous – i.e. when ( r

60 , $r, 20) and ( g

60 , $g, 20) are replaced

with ( r

60 , $r, r) and ( g

60 , $g, g) – the percentage of participants who opt for no ambi-

guity rises to almost 80%.

As the next observation shows, the behavioral patterns observed at the aggregate

level are confirmed at the individual level.

Observation 4. Consider the set of participants who (i) choose no ambiguity when

they can a↵ect the ambiguity in only a single dimension, while the remaining dimen-

sions are objectively known, but (ii) choose an ambiguous gamble with more exposure
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when one of the fixed objective dimensions becomes ambiguous. Most of these partic-

ipants prefer no ambiguity to an ambiguous gamble with more exposure.

In particular, the only situation in which multiple-ambiguity-with-more-exposure

is available alongside no-ambiguity is when there is ambiguity in probability and

prize. When choosing prizes, there are 40 participants (out of 97) who “switch” from

the known color to the more ambiguous one with more exposure when the probabil-

ity becomes fixed at r/60. Of these, however, 28 choose no-ambiguity to multiple-

ambiguity-with-more-exposure when both are available. (Similarly, 39 switch when

the probability is fixed at g/60, and 29 of them choose no-ambiguity over multiple-

ambiguity.) When choosing probabilities, there are 40 participants who switch from

the known color to the ambiguous one with more exposure when the prize becomes

fixed at $r. Of these, 31 choose no-ambiguity over multiple-ambiguity-with-more-

exposure when both are available. (Similarly, 39 “switch” when the prize is fixed at

$g, and 29 of them choose no-ambiguity over multiple-ambiguity.)

To take a systematic account of possible errors, and to better understand the im-

pact of allowing for ambiguity on multiple dimensions, we ran a series of multinomial

regressions (linear regressions return essentially identical results.) The results are

summarized in Table 7.20 Consistently with our observations above, relative to the

case in which participants choose either the winning probability or the prize amount

(while remaining dimensions are known), allowing for ambiguity in both dimensions

significantly lowers the fraction who choose no-ambiguity, while allowing for ambigu-

ity in the date has no significant e↵ect. In contrast, compared to the case in which

participants choose only the date, allowing for ambiguity in prize or probability sig-

nificantly increases the fraction who choose no-ambiguity.

20To understand these results, consider the regression which takes choice over probabilities as the
benchmark (the top part of Table 7). This regression asks: does allowing participants to choose
ambiguity in prizes and dates change their tendency of choosing the non-ambiguous option? When
participants choose the winning probability (from 20/60, r/60 and g/60), while the prize and date
are known, about 75% of them (on average) choose no ambiguity (this percentage corresponds
to the constant term in the linear regression, while the constant in the multinomial regression is
the log of the odds ratio: log(.748/(1 � .748)) = 1.08.) However, when the prize can also be
chosen to be ambiguous, only 65% choose no-ambiguity. Hence, 9.3% fewer subjects choose the
non-ambiguous option when they can also control the ambiguity in prizes. This is the coe�cient
of Prob & Prize in the linear regression (because of the type of questions asked, the only options
for ambiguity in two dimensions had the same colors for both dimensions). The log odds ratio here
is log(.655/(1 � .655)) = .63, which is .45 less than before. This di↵erence of -.45 gives the logit
coe�cient of Prob & Prize.
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Coefficient P>z
Choosing(Prob.
Prob%&%Prize *0.445 0.025

(0.198)
Prob%&%Date *0.183 0.445

(0.240)
Constant 1.085 0.000

(0.206)
Choosing(Prize
Prize%&%Prob. *0.627 0.000

(0.159)
Prize%&%Date 0.020 0.879

(0.133)
Constant 1.266 0.000

(0.213)
Choosing(Date
Date%&%Prob. 0.840 0.001

(0.247)
Date%&%Prize 1.224 0.000

(0.230)
Constant 0.062 0.721

(0.173)

Table 7: E↵ect on choosing no-ambiguity of allowing ambiguity in multiple dimensions.

4 A robustness treatment

A variant of the lab experiment was also conducted on Amazon.com’s Mechani-

cal Turk (MT) platform (see https://www.MT.com/MT/welcome).21 This provided

some evidence on the robustness of the findings in the Caltech lab. A total of 355

21Mechanical Turk is a “crowdsourcing” Internet marketplace that enables businesses and re-
searchers (known as “Requesters”) to post links to decision tasks known as HITs (Human Intelligence
Tasks). These tasks can take the form of either multiple choice questions or free-form writing. Work-
ers (called “Providers”) can then browse among existing tasks and complete them for a monetary
payment set by the Requester. Requesters can ask that Workers fulfill some qualifications before
engaging a task, and they can set up a test in order to verify the qualification. They can also accept
or reject the result sent by the Worker, which reflects on the Worker’s reputation. Currently, Work-
ers can have an address anywhere in the world. Payments for completing tasks can be redeemed on
Amazon.com via gift certificate or be later transferred to a Worker’s U.S. bank account. Requesters
pay 10 percent of the price of successfully completed HITs to Amazon. According to the New
York Times, in March 2007, there were reportedly more than 100,000 workers in over 100 countries
(Jason Pontin “Artificial Intelligence, With Help From the Humans”, published in the New York
Times on March 25, 2007). For a summary demographics on MT users see http://www.behind-the-
enemy-lines.com/2008/03/mechanical-turk-demographics.html. For an interactive map pinpointing
the locations of 50,000 of their MT workers around the world see http://techlist.com/MT/global-
MT-worker-map.php.
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(20/60,$20,0) 74% (20/60,$20,0) 90% (20/60,$20,20) 72%
(r/60,$20,0) 17% (20/60,$r,0) 9% (20/60,$20,r) 21%
(g/60,$20,0) 10% (20/60,$g,0) 1% (20/60,$20,g) 7%

(20/60,$r,0) 54% (r/60,$20,0) 69% (r/60,$20,20) 55%
(r/60,$r,0) 34% (r/60,$r,0) 22% (r/60,$20,r) 27%
(g/60,$r,0) 12% (r/60,$g,0) 8% (r/60,$20,g) 18%

(20/60,$20,20) 73% (20/60,$20,20) 86% (20/60,$r,20) 47%
(r/60,$20,20) 18% (20/60,$r,20) 8% (20/60,$r,r) 32%
(g/60,$20,20) 9% (20/60,$g,20) 6% (20/60,$r,g) 21%

(20/60,$r,20) 48% (20/60,$20,r) 74% (r/60,$r,20) 48%
(r/60,$r,20) 26% (20/60,$r,r) 20% (r/60,$r,r) 35%
(g/60,$r,20) 26% (20/60,$g,r) 6% (r/60,$r,g) 17%

Choosing1Prob. Choosing1Prize Choosing1Date

Table 8: Choice distributions of MT when participants can a↵ect the ambiguity of only a single

dimension.

participants participated in the MT treatment,22 which used the procedure used in

the Caltech lab with the following modifications. First, participants read the instruc-

tions online and were asked to imagine an opaque bag with colored chips. Second, all

choice problems were hypothetical and participants were paid a flat fee of $1 (par-

ticipation fees on MT are usually very low and range between $0.25 to $2). Third,

as MT participants were unlikely to have the patience and attention to answer 45

(repetitive) questions, they were only presented with two screens of problems: the

first screen (with payment today) and a second, randomly selected screen.

Overall, the MT data appears to be very similar to the Caltech data.23 Table

8 shows the results when participants can a↵ect the ambiguity of only a single di-

mension. (All the tables in this subsection focus on the case in which the additional

ambiguity is perfectly correlated with the number of red chips. Similar tables for

correlation with green appear in Table B.1 Appendix B.)

Table 8 shows that the main patterns exhibited in lab are present in the MT

dataset as well. There are, however, some di↵erences. First, the proportion of MT

22To minimize the possibility that the same individual participated more than once, participants
had to log in with an email address and state that this was their first time participating. A participant
who tried to log in more than once with the same email address was refused entry.

23MT participants were fairly consistent in their answers: 271 out of 355 (76%) gave transitive
answers in the 2 screens they faced.
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participants who chose no-ambiguity is weakly higher for each of the dimensions.24

In addition, the e↵ect of introducing a fixed ambiguous dimension on the choice of

ambiguous gambles is milder compared with the Caltech data: relative to the Cal-

tech participants, there is a lower fraction of participants who choose the ambiguous

gamble with more exposure.25 Coherently, the estimates of multinomial regressions

(for the e↵ect of making a fixed dimension ambiguous) are qualitatively similar to

the estimates obtained from the lab data, but the magnitude of the e↵ect is smaller.

(Table B.2 in Appendix B displays the estimation results for the MT data). The

distributions of choices in the lab and MT data are even more similar when partici-

pants have the option between no-ambiguity and ambiguity in multiple dimensions.

(See Table B.3 in Appendix B.) We have also estimated a logit model to study how

agents compare options with multiple ambiguities and options with no ambiguities.

The estimation results are again very similar to those obtained for the Caltech data

(see Table B.4 in Appendix B).26

5 Relating the data to theory

We now turn to discuss the theoretical predictions on our dataset made by existing

models of decision-making under uncertainty. The main message is that most models

have little to no predictive power: most models can accommodate almost all possible

rankings of the gambles considered in our experiment – both those exhibited by the

majority of our participants, but also very di↵erent ones. Thus, at least in theory,

there is no a priori reason to expect the emergence of a systematic behavior (from

two very di↵erent pools).

We begin with ambiguity on the prize and/or probability. (We shall discuss ambi-

24In contrast, the fraction of risk-loving participants was much higher in the MT sample: 61%
compared with 32% in the Caltech data. This relatively high proportion may be due to the fact
that the MT questionnaire was hypothetical.

25For example, when only the prize can be chosen ($20, $r or $g), and the winning probability is
changed from 20/60 to r/60, the fraction of participants who choose no ambiguity drops from 82%
to 36% in Caltech, whereas in MT the drop is from 90% to 69%.

26There are only a few notable exceptions. First, relative to the case in which participants can
only a↵ect ambiguity in probability (payment date), there is no significant e↵ect on the choice of
no-ambiguity when participants can also a↵ect the ambiguity in the prize (winning probability).
Second, relative to the case in which participants can only a↵ect ambiguity in the prize amount,
there is a significant negative e↵ect on the choice of no-ambiguity when participants can also a↵ect
the ambiguity in the winning probability.
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guity in the date separately, as the intuition is di↵erent for that case.) In what follows

we focus on two well-known models of choice under uncertainty: Max-Min Expected

Utility (MMEU, Gilboa and Schmeidler (1989)) and Recursive Non-Expected Utility

(RNEU, Segal (1987, 1990)).27 For simplicity, we impose the standard consistency as-

sumption that any prior must assigns probability 1/3 to a black chip being extracted,

and that conditional on there being r red chips in the urn, the probability of drawing

a black/red/green chip is 1
3/

r

60/
40�r

60 . This implies that the prior belief of a partici-

pant is defined, e↵ectively, on the number of red chips in the urn (or, equivalently,

the number of green chips).

In the MMEU model, a decision-maker has a set of priors ⇧ and a Bernoulli

utility function over prizes u. Let g(x) = (p(x),m(x), 0) be a gamble in which the

probability and prize are functions of x (which may be constant). According to this

model, the value V of a gamble g is the minimal expected utility from the gamble,

where the minimum is taken over all the priors in ⇧. That is, assuming u(0) = 0,

V (g(x)) = min
⇡2⇧

20X

x=0

⇡(x) · p(x) · u(m(x)).

We assume the decision-maker treats the colors red and green symmetrically: for any

prior ⇡ 2 ⇧ there exists a prior ⇡0 2 ⇧ s.t. ⇡0(40� r) = ⇡(r) for r = 0, 1, . . . , 40. It is

easy to see that, as long as ⇧ is not a singleton, the decision-maker would exhibit the

standard Ellsberg aversion to ambiguity in probability. In addition, if the decision-

maker is risk-averse, then he would prefer no-ambiguity to ambiguity in the prize

(this is true for any ⇧).

It is straightforward (but somewhat tedious) to show that if we do not impose

further restrictions on ⇧, then any ranking of (2060 , 20, t), (
x

60 , x, t) and (2060 , x, t) that re-

spects aversion to “single-dimensional ambiguity aversion,” i.e. (2060 , 20, t) � ( x

60 , 20, t)

and (2060 , 20, t) � (2060 , x, t), is compatible with MMEU for some ⇧ and some concave

u. Intuitively, this is due to the fact that there are two opposing forces at play when

evaluating ( x

60 , x, t): the more pessimistic the priors in ⇧, the less the agent will like

27We focus on MMEU both for its popularity, and because it is representative of a much larger
class of models for which essentially identical arguments could be given. On the other hand, RNEU
is a very di↵erent model, it has received recent empirical support (Halevy (2007)), and has been
recently used to ‘explain’ some ‘paradoxes’ that challenge many of the existing models of decision-
making under ambiguity (see Machina (2009, 2012), Baillon et al. (2011), Dillenberger and Segal
(2012)).
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this option; but the higher the variance of these priors, the more he will like it. As

discussed in Section 3.3, the latter point follows from the fact that in computing the

expected utility of this option (even with a pessimistic prior), the utility and the

probability are multiplied by each other, which – if the agent is not too risk averse –

generates a convexity that renders this options attractive if variance is high.28

Consider now the class of RNEUmodels. To simplify the exposition, we impose the

following restrictions (we will show how a large variety of ranking could be obtained

even in this specific case). First, we assume that the agent applies RNEU by applying

the Rank-Dependent Utility (RDU) model of Yaari (1987) to first-and second-stage

lotteries, with a linear utility u and a convex, i.e. pessimistic, weighting function.29

Second, we assume that belief on r has only two elements in the support: either 20�k

or 20+k, with equal probability, where k is an integer between 0 and 20. To describe

the corresponding functional let g

i

be a gamble in which there is probability p

i

of

winning m

i

(to be paid today) and zero otherwise. Let g1 and g2 be two gambles

with m1 � m2, and let g be a gamble in which there is 50% of playing g1 and 50%

of playing g2. According to this model, there exists a utility function u, which we

assume to be linear, and a probability weighting function f , which we assume to be

convex and satisfying f(0) = 0 and f(1) = 1, such that the value V assigned g is

V (g) = u(m1) · f(p1) · f(
1

2
) + u(m2) · f(p2) · [1� f(

1

2
)]

(assuming u(0) = 0).

It is easy to see that, as long as f is not linear but convex, this generates the

typical Ellsberg ranking of (2060 , 20, t) � ( x

60 , 20, t). Similarly, one can verify for a

su�ciently large (small) k, the “full-exposure” gamble ( x

60 , x, t) is preferred (inferior)

to each of the three gambles, (2060 , 20, t), (
x

60 , 20, t) and (2060 , x, t). The intuition is that

accepting the ambiguity of the full exposure gamble, ( x

60 , x, t), is worthwhile only if

one could win a high enough prize with a high enough probability. However, one

can find “intermediate” levels of k for which, for some convex f , the agent ranks

(2060 , 20, t) above ( x

60 , x, t), and ranks both above (2060 , x, t) and ( x

60 , 20, t) – the most

28For example, assuming a linear u, we obtain ( 2060 , 20, t) � ( x

60 , x, t) if ⇧ is the closed convex hull
of the set {⇡1,⇡2}, where ⇡1(10) = 1 and ⇡2(30) = 1. The opposite ranking, ( x

60 , x, t) � ( 2060 , 20, t),
could be obtained if ⇧ is the closed convex hull of the set {⇡3,⇡4}, where ⇡3(0) = ⇡3(39) =

1
2 , and

⇡4(1) = ⇡4(40) =
1
2 .

29Indeed the RNEU model is more general: the preferences need not follow RDU, the utility need
not be linear, and the probability weighting need not be convex.
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common ranking in our experiment. For example, this is true for f(p) = p

2 and

k = 10.30

Next, we discuss the theoretical predictions regarding attitudes towards ambiguity

in the payment date. Consider the choice between (2060 , 20, 20) and (2060 , 20, r) (a similar

argument can be made for a gamble where the date is g days away). Let p =

(p�20, . . . , p+20) be some prior belief on the number of red chips, where p

k

is the

probability that there are r = 20 + k red chips in the bag. Assume the participants’

preferences are additively separable over time with a standard exponential discount

factor � 2 (0, 1). These preferences may be represented by any of the existing decision-

theoretic models, as long as this assumption on time preferences is satisfied. Then

given the prior p, a participant prefers the non-ambiguous gamble if and only if

20X

k=�20

p

k

· �20(1� �

k) � 0 (1)

Let ↵ ⌘ � ln � and consider an expected utility maximizer with a CARA utility

u(x) = �e

�↵x and wealth zero. This decision-maker would accept a lottery that pays

k 2 {�20, . . . , 20} with probability p

k

if and only if (1) is satisfied. CARA preferences

have the property that there exists a threshold risk-aversion coe�cient ↵⇤ such that

any CARA decision-maker with a coe�cient ↵ = ↵

⇤ would be indi↵erent between

accepting and rejecting this lottery, while any decision-maker with a higher (lower)

coe�cient would reject (accept) it (see Aumann and Serrano (2008)). This implies

that any participant with a subjective discount factor � > e

�↵

⇤
would choose the

non-ambiguous gamble, and any participant with a lower discount factor would opt

for the ambiguous gamble. Hence, su�ciently patient decision-makers would prefer

no-ambiguity.

To summarize this section, the following conclusions can be drawn from the

decision-theoretic models we considered. The models do generate predictions re-

garding “single-dimensional” ambiguity: a decision-maker who is averse to ambiguity

30Note also that if f(p) = p

↵ with ↵ > 1, then the agent would exhibit the standard Ellsberg
paradox (preferring ( 2060 , 20, t) to ( x

60 , 20, t)) for any k. However, if f( 23 ) · f(
1
2 ) > f( 13 ), then for k

close to 20 the decision-maker may actually prefer the gamble with the ambiguous probability. At
the same time, any such agent would strictly prefer ( 2060 , 20, t) to ( 2060 , x, t) for any convex f and
for any k, the no-ambiguity gamble. In this sense, this model accommodates our finding that a
participant who was averse to ambiguity in probability also tended to be averse to ambiguity in
prizes, but not the converse.
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only in the probability dimension (i) would also be averse to ambiguity only in the

prize dimension if he is risk-averse, and (ii) would also be averse to ambiguity only

in the time dimension if he is su�ciently patient. However, even under reasonable

restrictions on the prior beliefs, the models have no prediction regarding attitudes to-

wards “multi-dimensional” ambiguity. In particular, they allow a decision-maker who

is averse to “single-dimensional” ambiguity to prefer ambiguity in more dimensions.

6 Concluding remarks

The goal of this paper was to explore how individuals actually approach ambiguity

when the ambiguity may be in di↵erent or in multiple dimensions. While most de-

cision problems in real life involve ambiguity in multiple dimensions, essentially all

models in decision-making under uncertainty are agnostic to the distinction between

these dimensions, and, in particular, provide no guidance as to what behavior we

should expect when individuals choose between gambles that involve in ambiguity in

more than one dimension. This paper explores the question of whether there is some

systematic, representative behavior that the majority of individuals exhibit.

We address this question by conducting an experiment on two very di↵erent par-

ticipant pools: the lab and Mechanical Turk. The majority of participants in both

participant pools exhibit the same systematic behavior: (i) they prefer no ambiguity

to ambiguity on any single dimension and to ambiguity on multiple dimensions, and

(ii) they prefer “correlated” ambiguity on multiple dimensions to ambiguity on any

single dimension.

Our results suggest that in economic settings, where some ambiguity is always

present, decision-makers may be more likely to choose uncertain prospects with “more

exposure to ambiguity” (in the sense that more dimensions are ambiguous and cor-

related).
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