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EVENT EXCHANGEABILITY: PROBABILISTIC SOPHISTICATION
WITHOUT CONTINUITY OR MONOTONICITY

BY CHEW SOO HONG AND JACOB S. SAGI1

Building on the Ramsey–de Finetti idea of event exchangeability, we derive a char-
acterization of probabilistic sophistication without requiring any of the various versions
of monotonicity, continuity, or comparative likelihood assumptions imposed by Savage
(1954), Machina and Schmeidler (1992), and Grant (1995). Our characterization iden-
tifies a unique and finitely-additive subjective probability measure over an algebra of
events.

KEYWORDS: Uncertainty, risk, ambiguity, decision theory, nonexpected utility, prob-
abilistic sophistication.

1. INTRODUCTION

IN THEIR PIONEERING STUDIES, Ramsey (1926) and de Finetti (1937) orig-
inated the idea of distinguishing events according to whether they are “ex-
changeable” or “ethically neutral,” providing the basis for their construction
of a decision maker’s subjective probability over events. Savage’s (1954) sub-
sequent formulation departs from this direction and nevertheless yields an
overall subjective probability on a σ-algebra of events. Building on Savage’s
approach, Machina and Schmeidler (1992) and, subsequently, Grant (1995)
provided more parsimonious characterizations of what is termed probabilistic
sophistication, in which the choice behavior of a decision maker reflects her
probabilistic belief in the sense that events are distinguished only by their sub-
jective probabilities.

Their contributions notwithstanding, some of the axioms employed by
Machina and Schmeidler (1992) and Grant (1995) are arguably too strong
for the notion of probabilistic sophistication. Consider, for instance, a deci-
sion maker with preferences over mappings from finite partitions of the state
space [0"1] to an outcome set X (i.e., simple acts). Suppose the decision maker
translates each act into a lottery by associating with the ith partition element
its measure pi ∈ [0"1] and its assigned outcome xi ∈X . Denote such a lottery
as, say, L = (x1"p1; # # # ;xn"pn). As long as the decision maker is indifferent be-
tween two acts that induce the same lottery, it seems reasonable to conclude that
she is probabilistically sophisticated. For instance, let X be the real line and sup-
pose that the decision maker ranks any simple act according to the expected

1This paper is based on two sections of an October 2003 working paper circulated under the
title “Small Worlds: Modeling Attitudes Towards Sources of Uncertainty.” We acknowledge help-
ful feedback from participants of seminar workshops at UC Berkeley, UBC, Bielefeld, Caltech,
Heidelberg, HKUST, INSEAD, NUS, UC Irvine, and UCLA, and participants of RUD 2003 in
Milan and FUR 2004 in Paris. We particularly benefitted from the comments of Eddie Dekel,
Paolo Ghirardato, Itzhak Gilboa, Simon Grant, Mark Machina, Marzena Rostek, Uzi Segal,
Costis Skiadas, four anonymous referees, and, especially, Peter Wakker. Support from the Re-
search Grants Council of Hong Kong (HKUST-6304/03H) is gratefully acknowledged.
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value of the lottery it induces, and if two lotteries have the same mean, the
one with a smaller variance is preferred. According to the preceding notion
of probabilistic sophistication, the decision maker is probabilistically sophisti-
cated. However, this lexicographic preference satisfies all the axioms of Savage
(1954), Machina and Schmeidler (1992), and Grant (1995), except for P6 (con-
tinuity).

As another example, suppose X is the two-dimensional positive orthant R2
+.

Let E[L] = ∑n
i=1 pixi and V (L) = ∑n

i=1 pi‖xi −E[L]‖ with ‖ · ‖ the Euclidean
metric. Suppose the decision maker’s preferences can be represented by the
utility function

U(L)=
n∑

i=1

pi(1 + x1
i )(1 + x2

i )−
1
2
V (L)#(1)

Here too, the decision maker is probabilistically sophisticated (according to the
preceding criteria). We show in the Appendix that (1) is monotonic in payoffs.
Thus if x1 > y1 and x2 > y2, this decision maker strictly prefers a probability
mixture of an arbitrary lottery L and (x1"x2), with probability p ∈ [0"1), to a
mixture of L and (y1" y2), with the same probability p. In addition, because
(1) is continuous, the preferences it represents are arguably unobjectionable
on normative grounds. However, as shown in the Appendix, (1) violates ax-
ioms P3 and P4 (monotonicity and comparative likelihood) in Machina and
Schmeidler (1992), as well as their analogues (P3CU , P3CL, and P4CE) in Grant
(1995).2

Say that two events are exchangeable if the decision maker is always indif-
ferent to permuting their payoffs. Building on exchangeability as a form of
equal likelihood, we develop a notion of comparability to capture the intuition
behind a likelihood relation among events. Specifically, two disjoint events
are comparable when one contains a subevent that is exchangeable with the
other. Informally, one is motivated to view one event as “larger” or more likely
than the other. When all disjoint events are comparable in this way, we show
that conditions weaker than Savage’s assumptions of monotonicity (P3), com-
parative likelihood (P4), and continuity (P6) suffice to deliver probabilistic
sophistication on the part of the decision maker. Indeed, the example of the
mean-variance lexicographic ranking and the ranking implied by (1) satisfy our
axioms.

The next section introduces preliminary notions, including formal definitions
of event exchangeability and comparability, presents our main result concern-
ing probabilistic sophistication, and relates our result to the existing literature.
Proofs, when not in the main text, are in the Appendix.

2 We thank Uzi Segal for suggesting this example, calling attention to the fact that P3 is synony-
mous with monotonicity in payoffs only if X is one-dimensional (e.g., monetary payoffs). Rostek
(2005) also explores probabilistic sophistication using modified versions of P3, P4, and P6.
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2. A PARSIMONIOUS AXIOMATIZATION FOR SUBJECTIVE PROBABILITIES

2.1. Exchangeability and Comparability

Let Ω be a space whose elements correspond to all states of the world. Let
X be a set of payoffs and let Σ be an algebra on Ω. Elements of Σ are events.
If e"E ∈ Σ, and e ⊆ E, then we say that e is a subevent of E. The set of sim-
ple acts F comprises all Σ-adapted and X-valued functions over Ω that have
a finite range. As is customary, x ∈ X is identified with the constant act that
pays x in every state. Throughout the paper we assume that the decision maker
has a nondegenerate binary preference relation % on F as in Savage’s P1 and
Grant’s P5.3

For any collection of pairwise disjoint events, E1"E2" # # # "En ⊂ Ω and
f1" f2" # # # " fn" g ∈ F , let f1E1f2E2 · · · fnEng denote the act that pays fi(ω) if
the true state, ω ∈ Ω, is in Ei and pays g(ω) otherwise. We say that E ∈ Σ is
null if fEh∼ gEh ∀ f"g"h ∈F .

We introduce a binary relation over events via %:

DEFINITION 1 —Event Exchangeability: For any pair of disjoint events
E"E′ ∈ Σ, E ≈E′ if for any x"x′ ∈X and f ∈F , xEx′E′f ∼ x′ExE′f#

Whenever E ≈ E′ we will say that E and E′ are exchangeable. Note that all
null events are exchangeable. Exchangeability can be viewed as expressing a
notion of equal likelihood: two events are equally likely if the decision maker
is indifferent to a permutation of their payoffs. As the next example demon-
strates, ≈ is not necessarily transitive and, therefore, is not an equivalence re-
lation.

EXAMPLE 1: Consider the partition {A"B1"B2"C} of Ω. Let X ≡ [0"1] and
let the utility representation over acts xAy1B1y2B2z be given by

V (x" y1" y2" z)= x+ z + y1 + y2

2
+ y1 − y2

4
x#

It is straightforward to check that the representation satisfies first order domi-
nance. It should also be clear that A≈ B1 ∪B2 and C ≈ B1 ∪B2. On the other
hand, it is certainly not the case that A ≈ C due to the asymmetry between
x and z arising in the last term of the utility function.

Intuitively, an event is “at-least-as-likely” as any of its subevents. Exchange-
ability motivates a similar comparison across disjoint events, E"E′ ∈ Σ: if a

3As usual, - (resp. ∼) is the asymmetric (resp. symmetric) part of %. Under Savage’s P1, % is
a weak order on F , while Grant’s P5 asserts that there exists f"g ∈ F such that f - g. Savage’s
version of P5 is slightly stronger, requiring the existence of x" y ∈X such that x- y .
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subevent of E is exchangeable with E′, then it is also natural to view E as at-
least-as-likely as E′. Building on this, we define the following exchangeability-
based relation between any two events.

DEFINITION 2—Exchangeability-Based Comparative Likelihood: For any
events E"E′ ∈ Σ, E %C E′ whenever E \ E′ contains a subevent e that is ex-
changeable with E′ \E. Moreover, e is referred to as a comparison event.

Just as the symbol ≈ represents a notion of equal likelihood among events,
the symbol %C intuitively represents an at-least-as-likely relation. The event
E is at-least-as-likely as E′ if outside their intersection the more likely
event (i.e., E \E′) contains a copy (i.e., the comparison event) of the less likely
event (i.e., E′ \E). Whereas ∅ is a subevent of any event and ∅ is exchangeable
with itself, E′ ⊆ E implies E %C E′.

For any E"E′ ∈ Σ, we say that E and E′ are comparable whenever E %C E′ or
E′ %C E. Finally, define E -C E′ whenever E %C E′ and it is not the case that
E′ %C E. Likewise, define ∼C as the symmetric part of %C .

We also need the following definitions:

DEFINITION 3: The symbol %◦ is a likelihood relation over Σ if the following
conditions hold:

(i) %◦ is a weak order over Σ;
(ii) Ω-◦ ∅ and for every A ∈ Σ, A%◦ ∅ and Ω%◦ A;

(iii) for every A"B"C ∈ Σ such that C ∩ (A ∪ B) = ∅, A %◦ B⇔A ∪ C %◦
B ∪C .

Note that the second requirement is satisfied by %C by virtue of the non-
triviality of %, whereas the last requirement is satisfied by the definition of %C .
Thus establishing that%C is a likelihood relation reduces to demonstrating that
condition (i) holds.

DEFINITION 4: The variable µ is an agreeing probability measure for %◦ if it is
a probability measure over Σ and for every A"B ∈ Σ, A%◦ B⇔ µ(A)≥ µ(B).

For any probability measure µ on Σ and act f ∈F , refer to {(µ(f−1(x))"x) |
x ∈X} as the lottery induced by the act f ∈ F with respect to µ. An atom is
an event that cannot be partitioned into two or more nonnull subevents. We
say that µ is purely and uniformly atomic whenever the union of all atoms has
unit measure and all atoms have equal measure. Measure µ is convex-ranged if
for every α ∈ [0"1] and A ∈ Σ there is a subevent a⊆A with µ(a) = αµ(A).
Finally, we say that µ is solvable if for every A"B ∈ Σ, µ(A) ≥ µ(B) implies
the existence of a subevent a⊆A with µ(a) = µ(B). Note that requiring µ to
be solvable is weaker than requiring it to be convex-ranged.
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2.2. Axioms and Main Result

Given a nonnull event e0, consider asking a decision maker to identify a
disjoint event (say e1) that is exchangeable with e0, then find another event
(say e2) disjoint from e0 ∪ e1 and exchangeable with e1, then find another event
(say e3) disjoint from e0∪e1∪e2 and exchangeable with e2, and so on. Then the
following Archimedean condition asserts that this procedure must end after a
finite number of steps:

AXIOM A—Event Archimedean Property: Any sequence of pairwise disjoint
and nonnull events {ei}ni=0 ⊆ Σ, such that ei ≈ ei+1 for every i = 0" # # # is necessarily
finite.

Axiom A can also be restated to say that if {ei}∞i=0 ⊆ Σ is a sequence of pair-
wise disjoint events with ei ≈ ei+1 for every i = 0" # # # then e0 is null.

Suppose that the decision maker behaves as if she assigns a unique proba-
bility measure to each event and that the measure of events along with their
assigned payoffs are the only relevant characteristics for the purpose of her
decision making. Clearly, if two events are equally likely, then their set dif-
ferences are also equally likely and thus exchangeable. Thus, if Σ is sufficiently
fine, any event will contain a subevent with arbitrary yet smaller likelihood and,
therefore, any two events in the decision maker’s world are comparable. The
next assumption asserts this by requiring completeness of %C .

AXIOM C—Completeness of %C : Given any disjoint pair of events, one of the
two must contain a subevent that is exchangeable with the other.

Although completeness of %C may be appealing, added to Axiom A it is not
sufficient for the existence of a likelihood relation, let alone a unique agree-
ing probability measure that represents %C . Consider the following condition,
which appears much weaker than Savage’s P3 and P4:4

AXIOM N —Event Nonsatiation: For any pairwise disjoint E"A"E′ ∈ Σ, if
E ≈E′ and A is nonnull, then no subevent of E′ is exchangeable with E ∪A.

Axiom N is equivalent to requiring that whenever two events are exchange-
able, adding a disjoint nonnull event to one of them makes the combined event
strictly more likely (i.e., E ∪A -C E′). How minimal is Axiom N? The next
result establishes that it is necessary for any exchangeability-based likelihood

4 Savage’s P3 states that for any nonnull event E ⊆Ω, act f ∈ F , and any x" y ∈X , x % y⇔
xEf % yEf . Savage’s P4 states that for any events E"E′ ∈ Σ and x∗"x∗" y∗" y∗ ∈X with x∗ - x∗,
y∗ - y∗, x∗Ex∗ % x∗E′x∗ implies y∗Ey∗ % y∗E′y∗. Machina and Schmeidler’s (1992) more restric-
tive P4∗ requires that for any f"g ∈ F and whenever E ∩ E′ = ∅, x∗Ex∗E′f % x∗E′x∗Ef implies
y∗Ey∗E′g% y∗E′y∗Eg.
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relation in which nonnull sets are strictly more likely than the empty set. Thus
to the extent that the latter is desirable, Axiom N is a minimal requirement
for any theory of probabilistic sophistication in which exchangeable events are
equally likely.

LEMMA 1: Assume that %◦ is a likelihood relation over Σ with (i) a symmetric
part that agrees with≈ on disjoint sets and (ii) A-◦ ∅ for all nonnull A ∈ Σ. Then
for any pairwise disjoint E"E′"A ∈ Σ such that A is not null, E ≈ E′ implies that
E ∪A-◦ E′.

PROOF: Assume that E"E′"A ∈ Σ are pairwise disjoint, A is not null, and
E ≈ E′ (meaning that E ∼◦ E′). Note that A %◦ ∅⇔ E ∪A %◦ E. Transitivity
of %◦ implies that E ∪A%◦ E′. If E ∪A∼◦ E′, then E ∪A∼◦ E. In particular,
the cancellation property (Definition 3(iii)) of a likelihood relation means that
A∼◦ ∅—a contradiction. Thus, E ∪A-◦ E′. Q.E.D.

We refer to the following results in Section 2.3.1, where we sketch the proof
of our theorem.

LEMMA 2: Axioms C and N imply for any E"E′"E′′ ∈ Σ, and E and E′ disjoint,
E %C E′ and E′′ ⊆ E′ ⇒ ∃ ê⊆ E with ê≈E′′. Moreover, E \ ê is not null whenever
E′ \E′′ is not null.

PROOF: Let e ⊆ E be the comparison event for E %C E′. If E′′ contains a
subevent e′′ ≈ e with E′′ \ e′′ not null, then e′′ ∪ (E′ \ e′′) ≈ e, in violation of
Axiom N. Thus, by Axiom C, e%C E′′ and ∃ ê⊆ e⊆E with ê≈E′′. If E′ \E′′ is
not null, then e \ ê cannot be null (and thus E \ ê is not null); otherwise, e≈E′′

and e≈ (E′ \E′′)∪E′′, in violation of Axion N. Q.E.D.

LEMMA 3: Axiom N implies, for any disjoint E"E′ ∈ Σ, that E ∼C E′ ⇔
E ≈E′.

PROOF: Assume E ∼C E′ ⇒ ∃e ⊆ E with e ≈ E′. Then E \ e must be null
(in which case E ≈ E′); otherwise, E′ ∼C e ∪ (E \ e) implies that E′ contains a
subevent exchangeable with e ∪ (E \ e) in violation of Axiom N. Now, E ≈ E′

implies E %C E′ and E′ %C E, thus implying E ∼C E′. Q.E.D.

LEMMA 4: For any pairwise disjoint a"b" c"d ∈ Σ, a≈ b and c ≈ d imply a ∪
c ≈ b∪ d.

PROOF: The result is a direct consequence of Definition 1. Q.E.D.

LEMMA 5: Given Axioms C and N, and any pairwise disjoint a"b" c"d ∈ Σ,
a∪ b≈ c ∪ d and a≈ c imply b≈ d.
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PROOF: If b 7≈ d, then Axiom C implies, without loss of generality, there is
some b′ ⊂ b such that b′ ≈ d and b \ b′ is not null. By Lemma 4, a∪ b′ ≈ c ∪ d,
which violates Axiom N because a∪ b \ a∪ b′ is not null. Q.E.D.

Our main result delivers exchangeability-based probabilistic sophistication
as necessary and sufficient for Axioms A, C, and N.

THEOREM 1: Axioms A, C, and N are satisfied if and only if there exists a
unique, solvable, and finitely additive agreeing probability measure µ for %C .
Moreover, µ is either atomless or purely and uniformly atomic, any two events have
the same measure if and only if they are exchangeable, and the decision maker is
indifferent between any two acts that induce the same lottery with respect to µ.

2.3. Discussion

We now turn to a discussion of Theorem 1. We begin by examining the intu-
ition behind the derivation. We then compare our axioms with their counter-
parts in the literature.

2.3.1. Sketch of Proof of Theorem 1

The proof proceeds by first establishing that %C is a likelihood relation that
can be represented by a unique finitely additive measure µ. The nontrivial
steps involve demonstrating that %C is transitive and that either Σ is gener-
ated by finitely many equal mass atoms or %C is fine and tight—both cases
known to be associated with a unique representing measure.5 To see how prob-
abilistic sophistication follows, consider two acts that induce the same lottery
with respect to µ. Then the equivalence between ∼C and ≈ for two disjoint
events (Lemma 3) ensures that the payoffs of f can be permuted to establish
indifference between f and g.

To get a better sense of how Axioms A, C, and N imply transitivity of %C ,
consider E %C E′ %C E′′ and assume for simplicity that E"E′"E′′ ∈ Σ are pair-
wise disjoint. The general idea is to establish that if E′′ -C E, then one can
construct an infinite sequence of nonnull pairwise disjoint events in violation
of Axiom A. To do this, we first note a simple implication of Lemmas 2 and 5:
E′′ %C E implies that for any subevent e ⊆ E there exists e′′ ⊆ E′′ such that
e′′ ≈ e and E′′ \ e′′ %C E \ e. Essentially, comparability and event nonsatiation
enable one to cleave equally sized pieces from E′′ and E, while maintaining the
ordering between the residual events.

If E′′ -C E, then one can find a nonnull subevent of E′′, say e1, such that
E′′ \ e1 ≈ E. Thus, E′′ \ e1 %C E %C E′. Next, since E′ %C E′′, one can cleave a

5 A relation on Σ is fine if it contains no atoms and for any event E there exists a partition of Σ
where no partition element is strictly more likely than E. The relation is tight whenever E -C E′,
and there are A"B ∈ Σ where A∩E′ = ∅ and B⊂E such that E -C A∪E′ and E \B -C E′.
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piece, say e2, from E′ such that e2 ≈ e1, giving E′ \ e2 %C E′′ \ e1 %C E. This can
be continued (e.g., cleave e3 ⊂ E such that e3 ≈ e2, etc.) and yields the infinite
sequence of nonnull events. The contradiction with Axiom A forces E %C E′′

and the desired transitivity of %C . The proof makes use of such a construction,
albeit in the more involved case where E"E′, and E′′ are not pairwise disjoint.

If Σ is atomless, tightness follows from Axiom N; fineness relative to a non-
null event, E, can be established by cleaving pairwise disjoint pieces from Ω\E
that are exchangeable with E. By Axiom A this can only be done a finite num-
ber of times before one ends up with a remainder event that is less likely
than E. This construction leads to a finite partition whose elements are no
more likely than E. The fact that %C is a fine and tight likelihood relation can
then be used to deduce the existence of a unique agreeing probability mea-
sure (see Wakker (1981)). We emphasize that, for probabilistic sophistication,
Σ need not be a σ-algebra and µ need not be convex-ranged. Axiom C, how-
ever, requires µ to be solvable. Kopylov (2004) derives probabilistic sophis-
tication on event domains in which µ may not be solvable and thus violates
Axiom C, but requires stronger axioms reminiscent of P3, P4∗, and P6 (see
also Abdellaoui and Wakker (2005)).

If Σ contains an atom, then completeness requires that every other event
contain a subevent that is exchangeable with the atom. Thus completeness
of %C implies that all events are unions of equiprobable atoms (details are
in the proof). In turn, Axiom A implies that the set of atoms is finite. Other
cases that involve atoms require a relaxation or at least a reexamination of the
structure imposed. Moreover, additional assumptions will be required to pin
down a unique representing measure for %C when it is atomic. This issue is not
unique to our work—the majority of papers in this literature tend to focus on
atomless state spaces and those that do not require considerably more struc-
ture than we do; see Wakker (1984), Chateauneuf (1985), Nakamura (1990),
Gul (1992), Chew and Karni (1994), and Köbberling and Wakker (2003).

2.3.2. Relationship to the Literature

Comparison with Machina and Schmeidler (1992): Machina and Schmeidler
(1992) show that the existence of a continuous probabilistically sophisticated
utility representation of % that agrees with first degree stochastic dominance
is equivalent to P1, P3, P4∗, P5, and P6.6 This result delivers a unique convex-
ranged probability measure where the measures of two events coincide if and
only if the events are exchangeable. It is straightforward to show that P3 implies

6See footnote 3 for definitions of P1 and P5, and footnote 4 for definitions of P3, P4, and P4∗.
First degree stochastic dominance, as used by Machina and Schmeidler, is essentially an expres-
sion of P3 in terms of lotteries and, in the case of multidimensional outcomes, is more restrictive
than monotonicity in outcomes (see footnote 2). Savage’s P6 requires that whenever f - g, then
for any x ∈X there is a sufficiently fine finite partition of Ω, say {Ei}ni=1 ⊂ Σ, such that xEif - g
and f - xEig for every i = 1" # # # " n.
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Axiom N. Hence, given their remaining axioms, Machina and Schmeidler’s P4∗
and P6 imply Axioms A and C. Note that P3, P4∗, and P6 are not implied by
Axioms A, C, and N because the latter are consistent with the representation
in (1), whereas the former are not (this is demonstrated in the Appendix).

The next proposition establishes two things: given a weak ordering that sat-
isfies P3, Machina and Schmeidler’s P4∗ is implied by completeness of %C .
Moreover, %C is, in this case, the comparative likelihood relation represented
in their probabilistically sophisticated setting.

PROPOSITION 1: Assume Savage’s P3 and Axiom C. Then for any x∗"x∗ ∈X
with x∗ - x∗, disjoint E"E′ ∈ Σ, and f ∈F , x∗Ex∗E′f % x∗E′x∗Ef ⇔ E %C E′.

In other words, to arrive at Machina and Schmeidler’s representation the-
orem, one need only replace Axiom N with P3 and add a stronger form of
continuity to our list of conditions.

Comparison with Grant (1995): The following highlights the limitations of an
exchangeability based approach to probabilistic sophistication.

EXAMPLE 2: Consider the “mother” example supplied by Grant (1995).
Suppose there are only two outcomes in the world of the decision maker: re-
ceipt of an indivisible good by child 1 or by child 2. A plausible representation
for the mother’s preferences is the utility function U(p) = p(1 − p), where
p is the probability that child 1 receives the indivisible good and is subjectively
generated by some device deemed by the mother to be uniform. According to
the definition of exchangeable events, any event with probability p ∈ [0"0#5] is
exchangeable with its complement.

In the example, ≈ fails to deliver a notion of likelihood, because given three
disjoint events E"E′, and A such that µ(E) = µ(E′) = 0#4 and µ(A) = 0#2,
the mother’s preference behavior leads to the conclusion that E ≈ E′ while
E ∪A ≈ E′, in violation of Axiom N. Failure of the latter to deliver what is
clearly probabilistically sophisticated behavior can be attributed to the highly
restricted nature of the outcome space. If the good is divisible, say chocolate, or
there is an outcome in which nothing is given to either child, then it will likely
no longer be the case that any event is exchangeable with its complement; for
instance, if E is a probability 0#6 event, then it is reasonable to suppose that the
mother is not indifferent between giving each child a piece of chocolate if E is
realized and nothing otherwise, versus giving each child a piece of chocolate if
the complement of E is realized and nothing otherwise.

As stated, our axioms do not encompass those of Grant (1995), whose
approach, in particular, can accommodate Example 2. Grant (1995) weak-
ens P3 to either one of two variants: conditional upper (or lower) eventwise
monotonicity (P3CU or P3CL, formally stated in the proof to the next proposi-
tion). However, the preceding discussion suggests that the peculiarities of the
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mother example may not arise when the outcome set is slightly enlarged.7 The
following result provides a condition under which either one of Grant’s P3CU

and P3CL axioms implies Axiom N.

PROPOSITION 2: Assume that for every nonnull A ∈ Σ there exist z" z′" y"
y ′ ∈ X such that z - yAz and y ′Az′ - z′. Then either one of Grant’s P3CU

or P3CL axioms implies Axiom N.

The condition “for every nonnull A ∈ Σ there exist z" z′" y" y ′ ∈X such that
z - yAz and y ′Az′ - z′” is a form of nonsatiation in outcomes. It can therefore
be viewed as a richness assumption on both % and the outcome set X .

Under the conditions in Proposition 2, Grant’s unique measure that rep-
resents probabilistic sophistication agrees with %C , and his axioms (taken
together) imply both completeness of %C and Axiom A. In other words, prob-
abilistically sophisticated preferences that satisfy Grant’s axioms also satisfy
ours provided that the outcome space is sufficiently rich to ensure that Ax-
iom N is also satisfied. In practice, Grant’s axioms are more demanding than
ours in the sense that they require a form of continuity and monotonicity not
needed in Theorem 1, and rule out many probabilistically sophisticated func-
tional forms that are admissible under our axioms.
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APPENDIX

PROOFS OF CLAIMS FOR THE PREFERENCE SPECIFICATION IN EQUA-
TION (1):

Monotonicity in Payoffs: To show that for any lottery L= (x1"p1; # # # ;xn"pn),
U(L) is increasing in xj

i for arbitrary i = 1" # # # " n and j = 1"2, differentiate to
get

∂U(L)

∂xj
i

= pi(x
j
i + 1)− pi

2
(xj

i −E[L]j)
‖xi −E[L]‖ + pi

2

n∑

k=1

pk

(xj
k −E[L]j)

‖xk −E[L]‖ > 0#

7To emphasize the importance of the outcome space, we note that whenever X contains only
two outcomes, Σ is atomless, and % can be represented via a continuous and probabilistically
sophisticated utility function, Axiom N is satisfied if and only if the representation is monotonic
in the sense of P3. We thank I. Gilboa for pointing this out.
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Violation of P3: Consider x = (1"0) and y = (1/3"1/3). Then U(x) > U(y).
On the other hand, U((x"1/2;0"1/2)) < U((y"1/2;0"1/2)), thus violating P3.

Violations of P3CU and P3CL: Consider L≡ ((6"1/2)"1/10; (6"3)"9/10) and
L′ ≡ ((1"6)"1/10; (6"3)"9/10). Let L′′ ≡ 1

2L + 1
2L

′ denote the even prob-
abilistic mixture of L and L′. Then it is straightforward to calculate that
U(L′′) > U(L′) > U(L), in violation of P3CL in Grant (1995). On the other
hand, setting L equal to the degenerate lottery (0"9) and setting L′ equal to
the degenerate lottery (10"0) yields U(L′) > U(L) > U(L′′), in violation of
Grant’s P3CU .

Violations of P4 and Its Variants: Let x∗ = (8"0) and x∗ = (3/2"3/2).
Then U(x∗) > U(x∗) and it is easy to check that U((x∗"1/2;x∗"1/2)) <
U((x∗"1/20;x∗"19/20)). On the other hand, letting y∗ = (2"2) and y∗ = x∗,
dominance necessitates U(y∗) > U(y∗) and U((y∗"1/2; y∗"1/2)) > U((y∗"
1/20; y∗"19/20)), in violation of P4 (and consequently P4∗ in Machina and
Schmeidler (1992)).

Grant (1995) uses a variant of P4, which he calls P4CE , stating that for
any x" y" z"w ∈X , g"h ∈ F , and E"E′ ∈ Σ, xE ∪ E′g - xEyE′g ∼ yExE′g -
yE ∪ E′g implies wEzE′h∼ zEwE′h. The example used to demonstrate that
U(·) violates P4 can be slightly modified to show that U(·) also violates P4CE .
Specifically, find p for which U((x∗"1/2;x∗"1/2)) ∼ U((x∗"p;x∗"1 − p))
(this turns out to be approximately 0#088) and note that dominance implies
U((y∗"1/2; y∗"1/2)) > U((y∗"p; y∗"1−p)).

Consistency with Axioms A, C, and N: First note that because U(·) in (1) is
monotonic in payoffs, two events are exchangeable if and only if their mea-
sure coincides. Consequently, the uniform measure on events is an agreeing
probability measure for %C . Hence, Axioms A and C are trivially satisfied.
Next, monotonicity in payoffs implies that for any nonnull event A, it must
be that A -C ∅. By identifying %◦ in Lemma 1 with %C , one establishes that
Axiom N is satisfied. The same argument can be applied to demonstrate that
the lexicographic example of the Introduction also satisfies Axioms A, C,
and N. Q.E.D.

PROOF OF THEOREM 1: We prove the theorem in several steps:

STEP A: If E"E′, and E′′ are pairwise disjoint events, then E ≈E′ and E′ ≈ E′′

imply E ≈E′′.

PROOF: This is trivial if any of the events are null, so assume otherwise.
If E 7≈ E′′, then without loss of generality, there is some nonnull event e1 ⊂ E
such that E \e1 ≈E′′. Lemma 2 implies the existence of a nonnull event e2 ⊂ E′

such that E′ \ e2 ≈ E \ e1. The events e1 and e2 are disjoint, so Lemma 5 gives
e1 ≈ e2. The fact that E′′ ≈ E′ can be similarly used to establish the existence
of a set e3 ⊂ E′′ disjoint from e1 and e2 such that e3 ≈ e2. Similarly, E \ e1 ≈
E′′ leads to e4 ⊂ E \ e1 such that e4 ≈ e3, etc. Clearly this can be continued
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FIGURE 1.—Venn diagram useful in proving Theorem 1.

to construct an infinite sequence of nonnull events that are disjoint such that
ei+1 ≈ ei, in violation of Axiom A. Q.E.D.

STEP B: Let a1" a2" a3" b1" b2" b3 be pairwise disjoint events in Σ (see Figure 1).
Then a1 ∪ b3 ≈ a2 ∪ b2 and a2 ∪ b1 ≈ a3 ∪ b3 imply a1 ∪ b1 ≈ a3 ∪ b2.

PROOF: The idea is to demonstrate the existence of events a′1" a′3" b′1, and b′2,
where a′1 ⊆ a1" a′3 ⊆ a3" b′1 ⊆ b1, and b′2 ⊆ b2, such that a′1 ≈ a′3, a1 \ a′1 ≈ b′2,
a3 \ a′3 ≈ b′1, and b1 \ b′1 ≈ b2 \ b′2. This enables one to write, using Lemma 4,
a1 ∪ b1 = a′1 ∪ (a1 \ a′1)∪ b′1 ∪ (b1 \ b′1)≈ a′3 ∪ b′2 ∪ (a3 \ a′3)∪ (b2 \ b′2)= a3 ∪ b2,
which is the desired result.

B(i): Lemma 2 implies the existence of â1 ∪ b̂3 ≈ a2 and ǎ3 ∪ b̌3 ≈ a2, with
â1 ⊆ a1" ǎ3 ⊆ a3, and b̂3" b̌3 ⊆ b3. Similarly, Lemma 2 also implies the existence
of â2 ≈ b̂3 and ǎ2 ≈ b̌3, where â2" ǎ2 ⊆ a2. Set a′2 ≡ a2 \ (â2 ∪ ǎ2) and note that,
using Lemma 5, a′2 ⊆ a2 \ â2 ≈ â1 and a′2 ⊆ a2 \ ǎ2 ≈ ǎ3. Lemma 2 implies the
existence of a′1 ⊆ a1 and a′3 ⊆ a3 such that a′1 ≈ a′2 ≈ a′3. Step A gives a′1 ≈ a′3.

B(ii): Defining b′3 ≡ b̂3 ∪ b̌3 gives a′1 ∪ b′3 ≈ a2 ≈ a′3 ∪ b′3 (using Lemma 4).
From a1 ∪ b3 ≈ a2 ∪ b2, a3 ∪ b3 ≈ a2 ∪ b1, and B(i), Lemma 5 implies that (a1 \
a′1) ∪ (b3 \ b′3) ≈ b2 and (a3 \ a′3) ∪ (b3 \ b′3) ≈ b1. Lemma 2 implies there are
b′2 ⊆ b2 and b′1 ⊆ b1 such that b′2 ≈ a1 \a′1 and b′1 ≈ a3 \a′3. By Lemma 5, b1 \b′1 ≈
b3 \ b′3 and b3 \ b′3 ≈ b2 \ b′2, thus Step A implies that b1 \ b′1 ≈ b2 \ b′2. Q.E.D.
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STEP C: The relation %C is transitive.

PROOF: Now, given E"E′"E′′ ∈ Σ, suppose that E %C E′ and E′ %C E′′. Let
e′ ⊆ E′ \ E′′ be a comparison event between E′ and E′′ (i.e., e′ ≈ E′′ \ E′).
Lemma 2 implies there is some ê⊆E \ (e′ ∪ (E′ ∩E′′)) such that ê≈ (e′ ∪ (E′ ∩
E′′)) \E. We can now apply Step B as follows. Let the lower circle in Figure 1
correspond to E′′. This can be broken up into two pieces: E′′ \E′ ≡ a3 ∪ b3 and
E′′ ∩E′ ≡ b2 ∪ c. Likewise, let e′ correspond to a2 ∪b1, so that a2 ∪b1 ≈ a3 ∪b3.
Finally, let a1 ∪ b3 ≡ ê and set ξ = (e′ ∪ (E′ ∩ E′′)) ∩ E. Diagrammatically,
ξ corresponds to b1 ∪ c. Note that we identify the left and right circles with
subevents of E and E′, respectively. It follows that b1 = ξ ∩ e′" a2 = e′ \ b1" b3 =
ê∩E′′" a1 = ê \b3" b2 = ((e′ ∪ (E′ ∩E′′)) \E)∩E′′, and a3 =E′′ \ (ê∪E′). Now,
ê≈ (e′ ∪ (E′ ∩E′′)) \E means that a1 ∪b3 ≈ a2 ∪b2. Whereas a2 ∪b1 ≈ a3 ∪b3,
Step B implies a1 ∪ b1 ≈ a3 ∪ b2. Moreover, because E′′ \ E = a3 ∪ b2 and
a1 ∪ b1 ⊆E \E′′, by definition E %C E′′. Q.E.D.

STEP D: The relation %C is a likelihood relation.

PROOF: Step C establishes that%C is a weak order (transitive and complete)
over Σ. Condition (ii) in Definition 3 (of a likelihood relation) is satisfied by%C

due to the presence of nonnull events (P5) and Axiom N, while condition (iii)
is automatically satisfied by the definition of comparability. Q.E.D.

STEP E: The relation %C is either atomless and tight or purely and uniformly
atomic.

PROOF: Assume first that Σ contains an atom a, and denote ac as its relative
complement in Ω. Note that for any e ∈ Σ it cannot be that a -C e, because
a cannot be partitioned into two or more nonnull events. Thus ac %C a. If
a≈ ac , then, by Axiom N, ac must also be an atom and Σ therefore consists
of two exchangeable atoms. Suppose instead that ac 7≈ a. Then there is some
event a1 ⊂ ac with a1 ≈ a and ac \ a1 not null. By Axiom N, a1 must be an atom
in Σ, and by Axiom C, ac \a1 %C a. In turn this implies the presence of another
atom a2 ≈ a in ac \ a1 with a"a1, and a2 disjoint and pairwise exchangeable.
According to Axiom A, this can be continued at most a finite number of times,
proving that Σ is generated by a finite set of atoms. Transitivity of ≈ (Step A)
implies that all atoms are pairwise exchangeable.

Assume now that Σ is atomless. To demonstrate tightness (see footnote 5),
consider that E -C E′ implies that there is some e⊂E \E′ such that e≈ E′ \E
and E \ (e ∪ E′) is not null. Whereas Σ is atomless, E \ (e ∪ E′) can be split
into two disjoint nonnull events, ξ1 and ξ2, both in Σ, that are subsets of E and
disjoint from e ∪ E′. By Axiom N, no subevent of E′ \ E is exchangeable with
e∪ξ2. Thus Axiom C implies that E = e∪ξ2 ∪ (E ∩E′)∪ξ1 -C (E′ \E)∪ (E ∩
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E′)∪ ξ1 = E′ ∪ ξ1, where ξ1 ∩E′ = ∅. A similar argument implies E \ ξ1 -C E′,
implying that %C is tight. Q.E.D.

STEP F: If %C is atomless, then it is fine.

PROOF: To show this, for any E ∈ Σ we construct a finite partition of Ω at
least as fine as E, {ei}, starting with e1 ≡ E. Next, Axiom C implies that either
E %C Ec or Ec %C E. In the former case, let e2 ≡ Ec . Then {e1" e2} forms a
partition that contains events at least as fine as E. In the latter case, define e2
as the comparison event in Ec that, by definition, is exchangeable with E. Once
again, Axiom C implies that either E %C (E ∪ e2)c or (E ∪ e2)c %C E, and we
can continue constructing events exchangeable with E and disjoint from each
other in the obvious way. By Axiom A, this construction must be finite and
constitutes a partition of Ω that consists of events at least as fine as E. Thus
%C is fine. Q.E.D.

STEP G—Conclusion: In either the atomic or the fine and tight case, there
exists a unique finitely additive probability measure µ that agrees with %C (see
Wakker (1981)). Therefore, µ is solvable; moreover, it is a countably additive
convex-ranged measure if Σ is a σ-algebra (as in Savage’s original treatment).
Finally, whenever the measure of two events E"E′ coincides, it must be that
E %C E′ and E′ %C E; in turn, Lemma 2 implies that E ≈E′.

To prove that the decision maker is indifferent between all acts that induce
the same distribution, one can use the arguments in Steps 4 and 5 in the proof
of Theorem 1 in Machina and Schmeidler (1992) or Step 5 in the proof of
Theorem 1 in Grant (1995). Proving necessity of Axioms C and A is trivial;
necessity of Axiom N follows from Lemma 1. Q.E.D.

PROOF OF PROPOSITION 1: Assume E %C E′. For any x∗"x∗ ∈ X with
x∗ - x∗ and f ∈ F , write x∗Ex∗E′f = x∗ξ ∪ ξ′x∗E′f , where ξ ∪ ξ′ = E and
ξ′ ≈E′. By definition of ≈, we have that x∗ξ∪ξ′x∗E′ f ∼ x∗ξ∪E′x∗ξ′f . By P3,
the latter dominates x∗E′x∗ξ ∪ ξ′f = x∗E′x∗Ef . In summary, x∗Ex∗E′f %
x∗E′x∗Ef .

If E′ -C E, then E′ contains a nonnull subevent e′ such that E′ \ e′ ≈ E.
Using P3: E′ -C E⇒ x∗E′x∗Ef - x∗Ex∗E′f . Axiom C and the contrapositive
of the latter give x∗Ex∗E′f % x∗E′x∗Ef ⇒ E %C E′. Q.E.D.

PROOF OF PROPOSITION 2: Grant’s axioms state that for any x" y ∈ X ,
h ∈F , and disjoint nonnull E"E′ ∈ Σ,

x(E ∪E′)f - y(E ∪E′)f ⇒ xEyE′f - y(E ∪E′)f (P3CU)"

x(E ∪E′)f - y(E ∪E′)f ⇒ x(E ∪E′)f - xEyE′f (P3CL)#

We first establish the following property under the hypothesis,
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PROPERTY †: For any disjoint E"E′"A ∈ Σ with E∪E′ ∪A not null, if x(E∪
A)x′E′f ∼ xEx′(E′ ∪A)f for every x"x′ ∈X and f ∈F , then A is null.

Specializing to acts that have the property f (ω)= x′ for ω /∈E ∪E′ ∪A, this
becomes x(E ∪A)x′ ∼ xEx′ for every x"x′ ∈X . Note that, under the hypoth-
esis of the proposition, when E is null, A too must be null. Assuming E is not
null, there exist z" z′" y" y ′ ∈X such that z - y(E∪A)z and y ′(E∪A)z′ - z′. If
P3CU is satisfied and A is not null, it must be that zAyEz = yEz - y(E ∪A)z,
a contradiction of x(E∪A)x′ ∼ xEx′ for every x"x′ ∈X . On the other hand, if
P3CL is satisfied and A is not null, it must be that y ′(E∪A)z - y ′Ez = zAy ′Ez,
also a contradiction. Thus A is null and Property † is established.

We now demonstrate that Property † implies Axiom N. Suppose E"A"
E′ ∈ Σ are pairwise disjoint, such that E ≈ E′ and A is nonnull. Let ξ′ be a
subevent of E′ that is exchangeable with E ∪A. By exchanging ξ′ for E ∪A,
we have for any x"x′ ∈ X and f ∈ F that x′(E ∪A)xE′f ∼ x′ξ′x((E ∪A) ∪
(E′ \ ξ′))f = x′ξ′x(E ∪ (A ∪ E′ \ ξ′))f . Similarly, by exchanging E with E′

it follows that x′(E ∪ A)xE′f ∼ x′(E′ ∪ A)xEf = x′(ξ′ ∪ (A ∪ E′ \ ξ′))xEf .
Property † implies A ∪E′ \ ξ′ is null, contradicting the fact that A is not null.
Avoiding the contradiction requires that no subevent of E′ is exchangeable
with E ∪A. Q.E.D.
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